• Title/Summary/Keyword: Pipelines

Search Result 828, Processing Time 0.02 seconds

Seabed Liquefaction with Reduction of Soil Strength due to Cyclic Wave Excitation

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.53-58
    • /
    • 2017
  • This study introduces the case of pipelines installed in subsea conditions and buried offshore. Such installations generate pore water pressure under the seabed because of cyclic wave excitation, which is an environmental load, and consistent cyclic wave loading that reduce the soil shear strength of the seabed, possibly leading to liquefaction. Therefore, in view of the liquefaction of the seabed, stability of the subsea pipelines should be examined via calculations using a simple method for buried subsea pipelines and floating structures. Particularly, for studying the possible liquefaction of the seabed in regard to subsea pipelines, high waves of a 10- and 100-year period and the number of occurrences that are affected by the environment within a division cycle of 90 s should be applied. However, when applying significant wave heights (HS), the number of occurrences within a division cycle of 3 h are required to be considered. Furthermore, to research whether dynamic vertical load affect the seabed, mostly a linear wave is used; this is particularly necessary to apply for considering the liquefaction of the seabed in the case of pile structure or subsea pipeline installation.

Vibrational Characteristics of Buried Gas Pipelines under Train Moving Loads (열차 이동하중에 의한 지중 매설 가스 배관의 진동 특성)

  • Won, Jong-Hwa;Kim, Moon-Kyum;Sun, Jin-Sun;Kim, Mi-Seung;Dang, N.Hai
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Recently, the vibration of underground structure due to high speed railway loads has been increased substantially as compared with middle and slow speed. The buried gas pipelines under continuous impact forces and repeated loading are more influenced by the vibrational loads than another pipelines. However, the static analysis was not enough to allow for the effect of vibrations because it uses impact factors for the design or analysis process. In this study, characteristics of Pipelines was quantitatively estimated through each conditions of soil covers and train speed, and the new vibration prediction is presented about the vibrational velocity.

  • PDF

Early warning of hazard for pipelines by acoustic recognition using principal component analysis and one-class support vector machines

  • Wan, Chunfeng;Mita, Akira
    • Smart Structures and Systems
    • /
    • v.6 no.4
    • /
    • pp.405-421
    • /
    • 2010
  • This paper proposes a method for early warning of hazard for pipelines. Many pipelines transport dangerous contents so that any damage incurred might lead to catastrophic consequences. However, most of these damages are usually a result of surrounding third-party activities, mainly the constructions. In order to prevent accidents and disasters, detection of potential hazards from third-party activities is indispensable. This paper focuses on recognizing the running of construction machines because they indicate the activity of the constructions. Acoustic information is applied for the recognition and a novel pipeline monitoring approach is proposed. Principal Component Analysis (PCA) is applied. The obtained Eigenvalues are regarded as the special signature and thus used for building feature vectors. One-class Support Vector Machine (SVM) is used for the classifier. The denoising ability of PCA can make it robust to noise interference, while the powerful classifying ability of SVM can provide good recognition results. Some related issues such as standardization are also studied and discussed. On-site experiments are conducted and results prove the effectiveness of the proposed early warning method. Thus the possible hazards can be prevented and the integrity of pipelines can be ensured.

An optimum design of on-bottom stability of offshore pipelines on soft clay

  • Yu, Su Young;Choi, Han Suk;Lee, Seung Keon;Do, Chang Ho;Kim, Do Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.598-613
    • /
    • 2013
  • This paper deals with the dynamic effect of pipeline installation and embedment for the on-bottom stability design of offshore pipelines on soft clay. On-bottom stability analysis of offshore pipelines on soft clay by DNV-RP-F109 (DNV, 2010) results in very unreasonable pipe embedment and concrete coating thickness. Thus, a new procedure of the on-bottom stability analysis was established considering dynamic effects of pipeline installation and pipe-soil interaction at touchdown point (TDP). This analysis procedure is composed of three steps: global pipeline installation analysis, local analysis at TDP, modified on-bottom stability analysis using DNV-RP-F109. Data obtained from the dynamic pipeline installation analysis were utilized for the finite element analysis (FEA) of the pipeline embedment using the non-linear soil property. From the analysis results of the proposed procedure, an optimum design of on-bottom stability of offshore pipeline on soft clay can be achieved. This procedure and result will be useful to assess the on-bottom stability analysis of offshore pipelines on soft clay. The analysis results were justified by an offshore field inspection.

A Study on the Free Vibration Responses of Various Buried Pipelines (각종 매설관의 자유진동거동에 관한 연구)

  • Jeong, Jin-Ho;Park, Byung-Ho;Kim, Sung-Ban;Kim, Chun-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1340-1347
    • /
    • 2006
  • Dynamic response of buried pipelines both in the axial and the transverse directions on concrete pipe and steel pipe, FRP pipe were investigated through a free vibration analysis. End boundary conditions considered herein consist of free ends, fixed ends, and fixed-free ends in the axial and the transverse direction. Guided ends, simply supported ends, and supported-guided ends were added to the transverse direction. The buried pipeline was regarded as a beam on an elastic foundation and the ground displacement of sinusoidal wave was applied to it. Natural frequencies and mode shapes were determined according to end boundary conditions. In addition, the effects of parameters on the natural frequency were evaluated. The natural frequency is affected most significantly by the soil stiffness and the length of the buried pipelines. The natural frequency increases as the soil stiffness increases while it decreases as the length of the buried pipeline increases. Such behavior appears to be dominant in the axial direction rather than in the transverse direction of the buried pipelines.

  • PDF

Development of Curve Fitted Equation for the Dynamic Response of a Buried Concrete Pipelines with Various End Boundary Conditions (여러 단부경계조건을 가진 콘크리트 매설관의 동적응답에 대한 곡선적합식의 개발)

  • Jeong, Jin-Ho;Kim, Sung-Ban;Joeng, Du-Hwoe
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.572-581
    • /
    • 2006
  • This study is to investigate dynamic response of concrete buried pipelines with various end boundary conditions and develop a curve fitted equation to ensure practicality and convenience for the use at the actual field for the test of resistance of earthquake. Dynamic response under the various end boundary conditions is calculated with analysis on values and computing programs. However, such a method of analysis requires skillfulness in using computing programs for dynamic movement of buried pipelines with dynamic analysis formula and has lower efficiency and practicality because, in the nature of analysis program of values, it needs much time to conduct repeated calculations. Therefore, the study is intended to develop a curve fitted equation to ensure more efficient and practical analysis. This paper tests various degrees of equation with non-linear least square method and developments a curve fitted equation based on the transmission speed with the best results. In the use of curve fitted equation, degree of polynomial and determining coefficient are influenced by the speed of transmission.

  • PDF

Development of Mobile Robot Systems for Automatic Diagnosis of Boiler Tubes in Fossil Power Plants and Large Size Pipelines (화력발전소 보일러 튜브 및 대형 유체수송관 자동 진단을 위한 이동로봇 시스템 개발)

  • Park, Sang-Deok;Jeong, Hee-Don;Lim, Zhong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.254-260
    • /
    • 2002
  • In this study, two types of mobile robotic systems using NDT (Non-destructive testing) method are developed for automatic diagnosis of the boiler tubes and large size pipelines. The developed mobile robots crawl the outer surface of the tubes or pipelines and detect in-pipe defects such as pinholes, cracks and thickness reduction by corrosion and/or erosion using EMAT (Electro-magnetic Acoustic Transducer). Automation of fault detection by means of mobile robotic systems for these large-scale structures helps to prevent significant troubles without danger of human beings under harmful environment.

Development of Split Tees for Gas Steel Pipelines (강재 가스배관용 분기티의 개발 연구)

  • Kim Young Gyu;Noh Ou Sun;Kim Ji Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.6-12
    • /
    • 2000
  • We have developed a new split tee which can be used to effectively branch into a main gas steel pipelines without losing any gas pressure or having to shut down a line. The split tee has been designed considering the locations of branch connection to the pipelines. Therefore, we could keep the depth of buried pipelines which used to be the problem of the conventional split tees. Test results of the developed split tee showed that the performance of the tightness, hydraulic strength, sealing, welding, bending, and compatibility were excellent. The application of the split tee can provide the advantage of eliminating cost and time, and easy field pipeline coatings.

  • PDF

Prognostics for Industry 4.0 and Its Application to Fitness-for-Service Assessment of Corroded Gas Pipelines (인더스트리 4.0을 위한 고장예지 기술과 가스배관의 사용적합성 평가)

  • Kim, Seong-Jun;Choe, Byung Hak;Kim, Woosik
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.4
    • /
    • pp.649-664
    • /
    • 2017
  • Purpose: This paper introduces the technology of prognostics for Industry 4.0 and presents its application procedure for fitness-for-service assessment of natural gas pipelines according to ISO 13374 framework. Methods: Combining data-driven approach with pipe failure models, we present a hybrid scheme for the gas pipeline prognostics. The probability of pipe failure is obtained by using the PCORRC burst pressure model and First Order Second Moment (FOSM) method. A fuzzy inference system is also employed to accommodate uncertainty due to corrosion growth and defect occurrence. Results: With a modified field dataset, the probability of failure on the pipeline is calculated. Then, its residual useful life (RUL) is predicted according to ISO 16708 standard. As a result, the fitness-for-service of the test pipeline is well-confirmed. Conclusion: The framework described in ISO 13374 is applicable to the RUL prediction and the fitness-for-service assessment for gas pipelines. Therefore, the technology of prognostics is helpful for safe and efficient management of gas pipelines in Industry 4.0.

Stability of onshore pipelines in liquefied soils: Overview of computational methods

  • Castiglia, Massimina;de Magistris, Filippo Santucci;Napolitano, Agostino
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.355-366
    • /
    • 2018
  • One of the significant problems in the design of onshore pipelines in seismic areas is their stability in case of liquefaction. Several model tests and numerical analyses allow investigating the behavior of pipelines when the phenomenon of liquefaction occurs. While experimental tests contribute significantly toward understanding the liquefaction mechanism, they are costly to perform compared to numerical analyses; on the other hand, numerical analyses are difficult to execute, because of the complexity of the soil behavior in case of liquefaction. This paper reports an overview of the existing computational methods to evaluate the stability of onshore pipelines in liquefied soils, with particular attention to the development of excess pore water pressures and the floatation of buried structures. The review includes the illustration of the mechanism of floating and the description of the available calculation methods that are classified in static and dynamic approaches. We also highlighted recent trends in numerical analyses. Moreover, for the static condition, referring to the American Petroleum Institute (API) Specification, we computed and compared the uplift safety factors in different cases that might have a relevant practical use.