• Title/Summary/Keyword: Pipeline transportation

Search Result 70, Processing Time 0.02 seconds

A Study on Influence of Ball Valve and Upstream Curved Pipe on Internal Flow of Pipeline (상류곡관에 의한 볼밸브 내부유동 영향성 연구)

  • JO, CHUL HEE;KIM, MYEONG JOO;CHO, SEOK JIN;HWANG, SU JIN
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.5
    • /
    • pp.463-468
    • /
    • 2015
  • This study describes the effect of upstream curved pipe on internal flow characteristics ball valve. Continuity and three-dimensional Reynolds-averaged Navier-Stokes equation have been used as governing equations for the numerical analysis. The upstream curved pipe - ball valve model was assumed that it is used for Alaska pipeline project which was planned to provide reliable transportation of natural gas from ANS to Alaska-Yukon border. Therefore the characteristics of pipe and operating condition of pipeline were from report of Alaska pipeline project. The three curvature and three location of upstream curved pipe were analyzed. The results shows that there are typical flow patterns at ball valve and the upstream curved pipe makes some differences to the internal flow of ball valve.

Reliability Estimation of Gas Pipelines Damaged by External Corrosion (외부부식에 의해 손상된 배관의 신뢰성평가)

  • Jin, Yeung-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.1-6
    • /
    • 2006
  • It is well known that pipelines have the highest capacity and are the safest and least environmentally disruptive form of transporting oil and gas. However, pipeline damage caused by both internal and external corrosion is a major concern threatening the reliability of oil and gas transportation and the soundness of the pipeline structure. In this study, we estimate the allowable damage by comparing the ASTM B31G code to a modified theory considering diverse detailed corrosive forms. The ASTM B31 G code has been developed as the evaluation method for reliability and incident prevention of damaged pipelines based on the amount of loss due to corrosion and the yield strength of materials. Furthermore, we suggest a method for estimating the expected life span of used pipelines by utilizing the reliability method based on major variables such as the depth and length of damage and the corrosion rate affecting the life expectancy of the pipelines.

Study on the Sulfide Corrosion to the Internal Surface of Transportation Pipeline

  • Zhang, Yiling;Qi, Ping;Kong, Dehong
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.193-196
    • /
    • 2008
  • This article briefly tests and analyzes the sulfur content and the distribution of active sulfur in the crude oil of Kurkow Kazakhstan and Siberian Russian, and discusses the relationship between active sulfur content and total sulfur content, active sulfur and corrosion. At the same time, it measures the open circuit potential of X70 steel and X60 steel witch have been immerged in the above two kind of crude oil for a period of time, discusses the sulfur corrosion to metal.

Cathodic Protection of Onshore Buried Pipelines Considering Economic Feasibility and Maintenance

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.158-168
    • /
    • 2016
  • During the installation of crude oil or gas pipelines, which pass through onshore buried pipelines or onshore pipeline from subsea pipeline to onshore plant, countermeasures need to be implemented so as to ensure a sufficient design life by protecting the steel pipes against corrosion. This can be achieved through impressed current cathodic protection method for onshore pipelines and through galvanic sacrificial anode corrosion protection method for offshore pipelines. In particular, in the case of impressed current cathodic protection, isolation joint flanges should be used. However, this makes maintenance control difficult with its installation having a negative impact on price. Therefore, in this study, the most suitable methodology for onshore pipeline protection between galvanic sacrificial anode corrosion protection and impressed current cathodic protection method will be introduced. In oil and gas transportation facilities, the media can be carried to the end users via onshore buried and/or offshore pipeline. It is imperative for the field operators, pipeline engineers, and designers to be corrosion conscious as the pipelines would undergo material degradations due to corrosion. The mitigation can be achieved with the introduction of an impressed current cathodic protection method for onshore buried pipelines and a galvanic sacrificial anode corrosion protection method for offshore pipelines. In the case of impressed current cathodic protection, isolation joint flanges should be used to discontinuity. However, this makes maintenance control to be difficult when its installation has a negative impact on the price. In this study, the most suitable corrosion protection technique between galvanic sacrificial anode corrosion protection and impressed current cathodic protection is introduced for (economic life of) onshore buried pipeline.

Simulation and Analysis of a Gas Pipeline Network in Kyungin Area using Statistical Approach (경인지역 가스 수송을 위한 배관망시스템의 모사 및 분석)

  • Lee Eun-Lyong;Chang Seung-Yong;Kim In-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.14-20
    • /
    • 1997
  • Pipeline network analysis requires fluid mechanics. A lot of equations have been used for flow analysis according to the behavior of fluid in pipelines and the operative situations. In this paper, simulation and analysis have been performed for the pipeline network system in Kyungin area using a steady-state mathematical model. Then, a statistical model using partial least squares(PLS) method has been developed with the data obtained from the developed mathematical model. The results showed that it is possible to simulate and analyze pipeline network systems using statistical approach.

  • PDF

A Study on Internal Flow Characteristics of T Branch using CFD Analysis (대구경 고압 T형 분기관의 지관 형상에 따른 내부 유동 영향성 해석)

  • JO, CHUL HEE;KIM, MYEONG JOO;CHO, SEOK JIN;HWANG, SU JIN
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.5
    • /
    • pp.438-444
    • /
    • 2015
  • This study describes the effect of T branch shape on internal flow characteristics inside itself. Continuity and three-dimensional Reynolds-averaged Navier-Stokes equation have been used as governing equations for the numerical analysis. The T branch was modeled assuming that it is used for Alaska pipeline project which was planned to provide reliable transportation of natural gas from ANS to Alaska-Yukon border. Therefore the characteristics of T branch and operating condition of pipeline were from report of Alaska pipeline project. The nine T branch shapes were analyzed and the mass flow rate ratio between mainline and branch was assumed to be 0.95 : 0.05, 0.9 : 0.1, 0.85 : 0.15. The results shows that there are typical flow patterns in T branch and the shape of T branch makes some differences to the internal flow of branch rather than mainline.

Experimental Study for Establishment of Long-term Monitoring System using Fiber Optical Sensor for Pipeline System for Waste Transportation (광섬유센서를 이용한 쓰레기 이송관로의 장기 계측시스템 구축을 위한 실험적 연구)

  • Kim, Haeng-Bae;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.35-43
    • /
    • 2016
  • Recently, the pipeline system for waste transportation has been increasingly constructed as new solution for the waste collection and disposal system by constantly increasing domestic waste which issued as social problem. The pipeline system is constructed through long distance, so proper long-term monitoring system is necessary which available to detect the damage location for the effective maintenance. In this paper, the experimental study is carried out to evaluate the applicability of optical strain gauge sensor based on FBG for the long-term monitoring system. Three test parameters such as pressure leaking, blockage and deformation are considered as typical damages for real-scale pipeline test specimen. In order to measure flexural and volumetric strain and temperature, three FBG sensors are installed at each monitoring sections. From the test results, this study suggested effective methods of sensor installation and arrangement. Also the sensor spacing for the design of monitoring system using FBG sensor is derived by the correlation of distances from deformation between sensor responses.

A novel semi-empirical technique for improving API X70 pipeline steel fracture toughness test data

  • Mohammad Reza Movahedi;Sayyed Hojjat Hashemi
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.351-361
    • /
    • 2024
  • Accurate measurement of KIC values for gas pipeline steels is important for assessing pipe safety using failure assessment diagrams. As direct measurement of KIC was impossible for the API X70 pipeline steel, multi-specimen fracture tests were conducted to measure JIC using three-point bend geometry. The J values were calculated from load-displacement (F-δ) plots, and the associated crack extensions were measured from the fracture surface of test specimens. Valid data points were found for the constructed J-Δa plot resulting in JIC=356kN/m. More data points were added analytically to the J-Δa plot to increase the number of data points without performing additional experiments for different J-Δa zones where test data was unavailable. Consequently, displacement (δ) and crack-growth (Δa) from multi-specimen tests (with small displacements) were used simultaneously, resulting in the variation of Δa-δ (crack growth law) and δ-Δa obtained for this steel. For new Δa values, corresponding δ values were first calculated from δ-Δa. Then, corresponding J values for the obtained δ values were calculated from the area under the F-δ record of a full-fractured specimen (with large displacement). Given Δa and J values for new data points, the developed J-Δa plot with extra data points yielded a satisfactory estimation of JIC=345kN/m with only a -3.1% error. This is promising and showed that the developed technique could ease the estimation of JIC significantly and reduce the time and cost of expensive extra fracture toughness tests.

Study of Hydraulic Transport of Sand-water Mixture by a Dredging Test Loop (준설시험루프를 이용한 모래-물 혼합물 배송에 관한 연구)

  • Lee, Man-Soo;Park, Young-Ho;Lee, Young-Nam;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1504-1511
    • /
    • 2005
  • The efficiency of the hydraulic transport of soil-water mixtures is an important factor in designing and operating a pump & pipeline system and is directly connected with dredging cost and working period. However, the hydraulic transport mechanism in the slurry flow inside the pipeline such as frictional losses, specific energy consumption, deposition velocity has not been well established. In this study a new dredging test loop system was designed and built. It is composed of a slurry pipeline with pipes of different diameters, a centrifugal slurry pump and a diesel engine connected with the slurry pump. and equipped with modern measuring facilities that enable to measure all important characteristics of a transportation system. The objective of this paper is to discuss the efficiency of the hydraulic transport of the Jumoonjin sand-water mixtures in the dredging test loop and to present simple equations induced from the test results of the loop that can express the transport product and the transport productivity.

  • PDF

A Study on the Consequences of Underground High Pressure Natural Gas Pipelines (고압 매몰 천연가스 배관 누출사고 피해해석에 관한 연구)

  • Lee, Seungkuk;Shin, Hun Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.44-49
    • /
    • 2013
  • Due to rapid rise of consuming rate for natural gas, installation and operation of high pressure natural gas pipeline is inevitable for high rate of gas transportation. Accordingly incidents on the underground high pressure natural gas pipeline come from various reasons will lead to massive release of natural gas and gas dispersion in the air. Further, fire and explosion from ignition of released gas may cause large damage. This study is for release rate, dispersion and flash fire of natural gas to establish a safety management system, setting emergency plan and safety distance.