최근 유가의 고공행진 때문에 한국은 해외 에너지 자원개발뿐만 아니라 에너지 소비를 줄이기 위한 국가적 정책으로 기존 설비의 에너지 효율을 증가시키는 방안을 모색하는 것이 필요한 시점이다. 따라서 본 연구는 이런 국가적 사안에 부합하고자 인천생산기지 고압 LNG 배관망에 대하여 수정유량방정식을 사용한 Newton Method로 접근하였고, 유창조절밸브(FCV)에 의해 지배적인 영향을 받는 것을 확인할 수 있었다. 또한, 고압펌프는 유량조절밸브 50%의 개도율에서 최고효율을 보여 주었고, 고압배관망 내에서 배관저항곡선은 LNG 헤드가 1,500m 이상이 되어야만 토출이 가능한 것을 보였다. 고압펌프의 운전점으로부터 운전비용을 산출하였고, 최고 효율시 운전비용과 비교하여 운전비용을 절감할 수 있는 금액을 산출하였다. 특히 일간 시간대별 운전비용 절감액뿐만 아니라 연간 일별 운전비용 절감액을 산출하였으며, 그 결과 고압배관망은 연간 138백만원을 절감할 수 있다. 이것은 연간 고압펌프 1기당 9,823천원을 절감할 수 있다는 것을 의미한다. 결론적으로 본 연구는 복잡한 고압 LNG 배관망에서 고압펌프의 운전특성과 운전비용 절감효과를 확인할 수 있었다. 또한 이것은 미시적으로 생산기지의 효율적 미래운영에 대한 기여와 더불어 거시적으로 국가 에너지 경쟁력 제고에 기여할 수 있을 것이다.
상·하수도 시스템은 사람들에게 안전하고 깨끗한 물을 공급해주는 사회기반시설이며, 특히 상·하수도 관로는 지중에 매설되어 있기 때문에 시스템의 결함검출이 매우 어렵다. 이러한 이유로 상·하수도 관로의 진단은 관로 내부에 카메라 및 드론을 통한 촬영을 하여 사후에 촬영된 영상을 바탕으로 시스템 진단하는 등의 사후 결함검출로 제한되기 때문에, 작업자의 업무 효율 증대와 진단의 신속성을 위해서는 관로의 실시간 탐지기술이 필요하다. 최근 첨단장비 및 인공지능 기법을 활용한 시설물 진단 기술이 개발되고 있지만, 인공지능기반 결함검출 기술은 결함 데이터의 종류 및 형태, 수가 검출 성능에 영향을 주기 때문에 다양한 학습데이터가 필요하다. 따라서, 본 연구에서는 상·하수도 관로의 결함검출 시 탐지 성능 향상을 위해 다양한 결함 시나리오를 3D 프린트를 이용하여 구현하고 이를 수집된 결함 데이터와 함께 학습데이터로 사용한다. 이후 수집된 이미지는 위험도에 따른 분류 및 객체의 라벨링 등의 전처리 작업이 수행되고 실시간 결함탐지를 수행한다. 제안된 기법은 상·하수도시스템 결함검출 시 실시간 피드백을 제공함으로써, 작업자의 진단 누락 가능성을 최소화하며 기존의 상·하수도관 진단업무 처리능력을 향상할 수 있다.
셀룰러 신경회로망(Cellular Neural Networks: CNN)은 그 구조가 간단함에도 불구하고 강력한 연산능력을 가지고 있어 영상처리에 이용되어 왔다. 그러나 실제의 대규모 영상에 포함된 화소의 양과 같은 막대한 셀들을 필요로 하는 CNN하드웨어를 구현하는 것은 불가능하다. 본 논문에서는 시 다중화 처리 기법으로 대규모 실영상을 처리할 수 있는 $5\times5$ CNN 하드웨어와 전 후 처리기를 구현하였다. 구현된 $5\times5$ CNN 하드웨어와 전 후 처리기의 성능을 평가하기 위해 $ 레나영상에 대해 윤곽선 검출을 수행하였으며, 약 4,000번의 시다중화 블록처리와 각 블록 마다 10번의 제어 펄스에 의한 파이프라인 동작에 의해 영상처리가 수행되었다. 따라서 본 논문에서 구현된 $5\times5$ CNN 하드웨어와 전 후 처리기를 실영상 처리에 이용할 수 있다.
Living organisms are comprised of various systems at different levels, i.e., organs, tissues, and cells. Each system carries out its diverse functions in response to environmental and genetic perturbations, by utilizing biological networks, in which nodal components, such as, DNA, mRNAs, proteins, and metabolites, closely interact with each other. Systems biology investigates such systems by producing comprehensive global data that represent different levels of biological information, i.e., at the DNA, mRNA, protein, or metabolite levels, and by integrating this data into network models that generate coherent hypotheses for given biological situations. This review presents a systems biology framework, called the 'Integrative Proteomics Data Analysis Pipeline' (IPDAP), which generates mechanistic hypotheses from network models reconstructed by integrating diverse types of proteomic data generated by mass spectrometry-based proteomic analyses. The devised framework includes a serial set of computational and network analysis tools. Here, we demonstrate its functionalities by applying these tools to several conceptual examples.
In this study, the priority of risk factors in supplying water through water supply pipeline network was evaluated by PROMETHEE and ANP multi-criteria decision analysis. We chose 'corrosion', 'burst' and 'water pollution' in pipe as major reference criteria and selected eight risk factors to evaluate the priority, and then we compared the results of PROMETHEE with those of ANP. We also analyzed the results of the sensitivity analysis by changing the weights and parameters of preference functions in PROMETHEE. We investigated the possibility of integrating two methods by using the results of ANP as the weights of preference function in PROMETHEE. The priority of risk factors for supplying municipal water which is evaluated by this study may provide basic data to establish a contingency plan for accidents, or to establish the specific emergency response procedures.
Convolutional Networks (ConvNets) are powerful models that learn hierarchies of visual features, which could also be used to obtain image representations for transfer learning. The basic pipeline for transfer learning is to first train a ConvNet on a large dataset (source task) and then use feed-forward units activation of the trained ConvNet as image representation for smaller datasets (target task). Our key contribution is to demonstrate superior performance of multiple ConvNet layer features over single ConvNet layer features. Combining multiple ConvNet layer features will result in more complex feature space with some features being repetitive. This requires some form of feature selection. We use AdaBoost with single stumps to implicitly select only distinct features that are useful towards classification from concatenated ConvNet features. Experimental results show that using multiple ConvNet layer activation features instead of single ConvNet layer features consistently will produce superior performance. Improvements becomes significant as we increase the distance between source task and the target task.
Hong, Kang Woon;Ryu, Won;Choi, Jun Kyun;Lim, Choong-Gyoo
ETRI Journal
/
제37권4호
/
pp.743-751
/
2015
Cloud gaming services are heavily dependent on the efficiency of real-time video streaming technology owing to the limited bandwidths of wire or wireless networks through which consecutive frame images are delivered to gamers. Video compression algorithms typically take advantage of similarities among video frame images or in a single video frame image. This paper presents a method for computing and extracting both graphics information and an object's boundary from consecutive frame images of a game application. The method will allow video compression algorithms to determine the positions and sizes of similar image blocks, which in turn, will help achieve better video compression ratios. The proposed method can be easily implemented using function call interception, a programmable graphics pipeline, and off-screen rendering. It is implemented using the most widely used Direct3D API and applied to a well-known sample application to verify its feasibility and analyze its performance. The proposed method computes various kinds of graphics information with minimal overhead.
In this study, we introduce trends in neural-network-based deep learning research applied to dialogue systems. Recently, end-to-end trainable goal-oriented dialogue systems using long short-term memory, sequence-to-sequence models, among others, have been studied to overcome the difficulties of domain adaptation and error recognition and recovery in traditional pipeline goal-oriented dialogue systems. In addition, some research has been conducted on applying reinforcement learning to end-to-end trainable goal-oriented dialogue systems to learn dialogue strategies that do not appear in training corpora. Recent neural network models for end-to-end trainable chit-chat systems have been improved using dialogue context as well as personal and topic information to produce a more natural human conversation. Unlike previous studies that have applied different approaches to goal-oriented dialogue systems and chit-chat systems respectively, recent studies have attempted to apply end-to-end trainable approaches based on deep neural networks in common to them. Acquiring dialogue corpora for training is now necessary. Therefore, future research will focus on easily and cheaply acquiring dialogue corpora and training with small annotated dialogue corpora and/or large raw dialogues.
Several studies have reported the effect of absorption of procyanidins and their contribution to the small intestine. However, differences between dietary interventions of procyanidins and interventions via antibiotic feeding in pigs are rarely reported. Following 16S rRNA gene Illumina MiSeq sequencing, we observed that both procyanidin administration for 2 months (procyanidin-1 group) and continuous antibiotic feeding for 1 month followed by procyanidin for 1 month (procyanidin-2 group) increased the number of operational taxonomic units, as well as the Chao 1 and ACE indices, compared to those in pigs undergoing antibiotic administration for 2 months (antibiotic group). The genera Fibrobacter and Spirochaete were more abundant in the antibiotic group than in the procyanidin-1 and procyanidin-2 groups. Principal component analysis revealed clear separations among the three groups. Additionally, using the online Molecular Ecological Network Analyses pipeline, three co-occurrence networks were constructed; Lactobacillus was in a co-occurrence relationship with Trichococcus and Desulfovibrio and a co-exclusion relationship with Bacillus and Spharerochaeta. Furthermore, metabolic function analysis by phylogenetic investigation of communities by reconstruction of unobserved states demonstrated modulation of pathways involved in the metabolism of carbohydrates, amino acids, energy, and nucleotides. These data suggest that procyanidin influences the gut microbiota and the intestinal metabolic function to produce beneficial effects on metabolic homeostasis.
This study is on modulo scheduling algorithms for multicore processor in machine learning applications. Machine learning algorithms are designed to perform a large amount of operations such as vectors and matrices in order to quickly process large amounts of data stream. To support such large amounts of computations, processor architectures to support applications such as artificial intelligence, neural networks, and machine learning are designed in the form of parallel processing such as multicore. To effectively utilize these multi-core hardware resources, various compiler techniques are being used and studied. In this study, among these compiler techniques, we analyzed the modular scheduler, which is especially important in one core's computation pipeline. This paper looked at and compared the iterative modular scheduler and the swing modular scheduler, which are the most widely used and studied. As a result, both schedulers provided similar performance results, and when measuring register pressure as an indicator, it was confirmed that the swing modulo scheduler provided slightly better performance. In this study, a technique that divides recurrence edge is proposed to improve the minimum initiation interval of the modulo schedulers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.