• Title/Summary/Keyword: Pipe Blockage

Search Result 22, Processing Time 0.026 seconds

Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system

  • Wang, Chenglong;Sun, Hao;Tang, Simiao;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • Small nuclear reactor features higher power capacity, longer operation life than conventional power sources. It could be an ideal alternative of existing power source applied for special equipment for terrestrial or underwater missions. In this paper, a 25kWe heat pipe cooled reactor power source applied for multiple use is preliminary designed. Based on the design, a thermal-hydraulic analysis code for heat pipe cooled reactor is developed to analyze steady and transient performance of the designed nuclear reactor. For reactor design, UN fuel with 65% enrichment and potassium heat pipes are adopted in the reactor core. Tungsten and LiH are adopted as radiation shield on both sides of the reactor core. The reactor is controlled by 6 control drums with B4C neutron absorbers. Thermoelectric generator (TEG) converts fission heat into electricity. Cooling water removes waste heat out of the reactor. The thermal-hydraulic characteristics of heat pipes are simulated using thermal resistance network method. Thermal parameters of steady and transient conditions, such as the temperature distribution of every key components are obtained. Then the postulated reactor accidents for heat pipe cooled reactor, including power variation, single heat pipe failure and cooling channel blockage, are analyzed and evaluated. Results show that all the designed parameters satisfy the safety requirements. This work could provide reference to the design and application of the heat pipe cooled nuclear power source.

Characterization of Chemical Sludge inside Pipes Using Torsional Guided Waves

  • Park, Kyung-Jo
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.29-35
    • /
    • 2014
  • A new method is presented that uses guided wave techniques for sludge and blockage detection in long-range pipelines. Existing techniques have the limitations that the sludge position needs to be known a priori and the area to be inspected needs to be accessible. A novel guided wave technique has been developed that allow the sludge or blockages to be detected remotely without the need to access the specific location where the pipe is blocked, nor to open the pipe. The technique measures the reflection of guided waves by sludge that can be used to accurately locate the blocked region. The effectiveness of the proposed technique is demonstrated and confirmed by experimental measurements.

Numerical Study of the Flow Characteristics in a Diesel Exhaust System with a Vane-Type Static Mixer (베인 타입 스태틱 믹서의 기하학적 변수에 따른 디젤 배기관 내 유동특성에 관한 연구)

  • Kang, Kyoung-Nam;Lee, Jee-Keun;Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.397-404
    • /
    • 2012
  • In this research, a numerical study was carried out on the mixing and flow characteristics of a vane-type static mixer for the reduction of $NO_x$ in the SCR systems from the diesel exhaust environments. The mixer was located at a distance of 57 times the pipe diameter away from the inlet. The analyses were performed by changing various parameters such as vane angles, blockage ratio, and location of the vane. Flow characteristics through the mixer were characterized by the uniformity index, swirl number, and pressure drop. The results show that uniformity index, pressure coefficient and swirl number are substantially influenced by the vane angle, blockage ratio and position of the vane of the mixer. In particular, the swirl number was increased when the vane was located near the pipe wall, or the vane angle was increased or scale was extended.

EMP Shielding Effectiveness of Water Pipe Structure Considering Attenuation Characteristics of Water (물의 감쇠특성을 고려한 배수관 구조의 EMP 차폐 효과 분석)

  • Kim, Woobin;Kim, Sangin;Kim, Waedeuk;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.1011-1014
    • /
    • 2017
  • Additional metal shielding is installed in the water pipes used in septic tanks to protect against damage from electromagnetic pulse (EMP) events. This shielding prevents EMP damage, but impurities present in water cannot pass through the shielding structure. Thus, the original function of the water pipes is lost as the pipes are blocked, and an additional maintenance workforce is needed to manage this blockage. To solve this problem, we propose a water pipe without an additional shielding structure; the proposed pipe was designed with consideration of the attenuation characteristics of water. The immersed depth was varied from 400 mm to 800 mm, while the diameter of the pipe was fixed at 100 mm. The shielding effectiveness increased from 70 dB to 100 dB around 2 GHz. Through the verification process, we propose an effective design guideline that can maintain the function of the water pipe and provide protection from EMP damages without additional shielding structure.

A Numerical Study for Reducing Cavitation in a Butterfly Valve with a Perforated Plate (다공판이 설치된 버터플라이밸브의 캐비테이션 발생 저감에 관한 수치적 연구)

  • Jo, Seong Hwi;Kim, Hong Jip;Song, Keun Won
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.65-70
    • /
    • 2014
  • The effectiveness of a perforated plate installed additionally at butterfly valve to reduce cavitation which can cause vibration, noise, erosion, and flow path blockage has been investigated using CFD. Rayleigh-Plesset equation was applied to simulate cavitation phenomena. 3D flow simulations have been performed for 6 cases to consider the occurrence of cavitation at the downstream of the valve. From the present results, the perforated plate was thought to be very effective to suppress the cavitation inside of the pipe.

The Effect of Solution Pressure to the Release in a Supercooled Aqueous Solution

  • Kang, Chae-Dong;Kim, Byung-Seon;Hong, Hi-Ki
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • Supercooled type ice storage system with aqueous solution (or water) may have trouble with non-uniform release of supercooling even though it contributes to the simplicity of system and ecological improvement. The non-uniform release increases the instability of the system because it may cause an ice blockage in pipe or cooling part. In order to suppress the release of the supercooling, a cooling experiment was tried to an ethylene glycol(EG) 3 mass% solution corresponding with pressurization. Also, the frequency ratio of the release of the supercooling was measured to the pressurization from 101 to 505 kPa. At results, the frequency ratio of supercooling release tends to decrease as the pressure of the aqueous solution increased in each cooling rate. Moreover, it tends to decrease as the cooling rate of the solution decreased in each pressure.

Study on Ice Making Behavior of Water Solution with Surfactant (계면활성제 첨가수용액의 제빙에 관한 기초연구)

  • ;Hideo Inaba;Akihiko horibe
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1175-1183
    • /
    • 2001
  • Recently, a great attention has been paid to the ice thermal storage system for the purpose of energy saving and reduction in peak electrical demand. In the present study, it has been investigated the freezing behavior of several kinds of water solutions with nonionic surfactant. In order to prevent ice blockage in a cooled pipe, the amount and wall adhesion behavior of ice of the test fluids were observed experimentally under different concentration of water solution with surfactant, temperature of cooled wall, and the shear velocity of test fluids. The results showed that the size of ice crystal became smaller at higher shear velocity at wall. And the lowest limit of wall adhesion of ice in water solution with surfactant was found at 230 W/$m^2$ of heat flux.

  • PDF

Effect of pressurization on dissolution of a supercooled aqueous solution with a stationary state (가압조건이 정지상태 과냉각 수용액의 해소에 미치는 영향)

  • Kim, Byung-Seon;Peck, Jong-Hyun;Hong, Hi-Ki;Kang, Chae-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.132-137
    • /
    • 2006
  • Supercooled type ice slurry system is hard to keep a proper supercooling degree when solution becomes supercooling state. This is the reason of the ice blockage in pipe or cooling part due to an unstable cooling state. In this study, a cooling experiment was performed to pressurized solution in a stationary state. The behaviors during the supercooled aqueous solution were investigated at fixed flow rate of brine and aqueous solution of ethylene glycol 7 mass%. Also the effect to the freezing point of supercooled aqueous solution was investigated to the different pressure 101, 202, 303, and 404 kPa. At results, the pressure of the aqueous solution in the cylinder increased the supercooling degree increased and dissolution of supercooled point decreased.

  • PDF

Dredging Material High Efficiency Transport Technology Test by Using the Electro Magnetic Field and Development of the Technical Design Manual (전자기장을 이용한 준설토 고효율 이송기술 실증 및 기술 지침 개발)

  • Kim, Dong-Chule;Kim, Yu-Seung;Yea, Chan-Su;Kim, Sun-Bin;Park, Seung-Min
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.173-182
    • /
    • 2018
  • As the research about increasing the efficiency of dredging soil transport, the technology, which reduce the friction between pipe wall and fluid in the pipe and disturbed generating pipe blockage, has been developed. So for the purpose of applying this technology to real construction site, main test has been tried at the real scale test in field. As a test result, this paper will show 30% flow efficiency increasing by permitted electro magnetic force to the pipe. And test result was evaluated as a ultra sonic velocity profiler. To propose the design technique and the execution manual of the high efficiency dredging material transport technic, this research have confirmed flow status changing depending on a soil material kind under electro-magnetic field and analyze the effect of electro-magnetic field which affects to each dredged soil material transportation. For achieving this research, EMF(Electro-Magnetic Field) generator is installed on the dredger(20,000HP) and through monitored flow status, dredging soil flow rate and sampled material specification is confirmed. Also dredger operating condition is measured and dredger power for soil transportation, hydraulic gradient and flow rate are compared, as transportation efficiency is calculated by this parameter, it is possible to check transportation efficiency improvement depending on each dredged soil material under electro-magnetic field. To verify the technique of dredged soil transfer using electromagnetic field, which is the core technique of the high efficiency dredged soil transfer, and the technique of expert system for pipeline transfer and the flow state. This could lead to a verification of transfer efficiency according to the characteristics of the dredged soil (sand, clay, silt) and the transfer distance (5km, 10km, 15km), which is planned to be used for a technology development of pump power reduction and long-distance transfer applying the high efficiency dredged soil transfer technology.

Heavy Metal Contamination of Roadside Gully-Pot Sediments, Seoul, Korea

  • Kim, Sung-Hwan;Lee, Pyeong-Koo;Yun, Seong-Taek;So, Chil-Sup
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.222-225
    • /
    • 2001
  • In urban environments, the surface land impermeability fundamentally related to urban growth emphasizes the environmental problems such as the storm water peak flow (so-called the urban flooding) and the pollution. The conventional urban drainage system provides a number of temporary reservoirs intercepting and retaining surface-derived pollutants following their introduction to and deposition upon the impermeable surface. Gully-pots are common features in urban drainage systems in Korea, which were installed for draining rainwater to prevent regurgitation in rainy season and retaining larger particles, hence minimizing pipe blockage problems. When the road runoff conveying sediment enters a gully-pot, the sediment mixes with the gully liquor causing direct pollution of receiving waters. The characteristics of local sediment contamination are usually related to the types of land use activities that take place or have taken place within the area., This study was undertaken to evaluate the spatial and temporal variations of the contamination of gully-pot sediments in Seoul with respect to heavy metals such as As, Cd, Co, Cr, Ni, Pb, Cu and Zn. The heavy metal data were examined according to the land use type. In this paper, sampling sites in Seoul were divided into six groups (commercial area, industrial area, residental area, motor way, rural area, and local pollution).

  • PDF