• Title/Summary/Keyword: Pipe Assessment

Search Result 268, Processing Time 0.037 seconds

Assessment of the Deterioration of Large-Diameter Pipe Networks (I) : Development of an Assessment Model (대구경 관로의 노후도 평가 연구(I) : 평가모형 개발)

  • Kim, Eung-Seok;Lee, Seung-Hyun;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.482-487
    • /
    • 2014
  • The purpose of this study (I) is to provide a new methodology for evaluating deterioration of buried pipe networks for the large-diameter old pipe improvement project currently performed by K-water. To develop a new assessment model for large-diameter pipe deterioration, this study has investigated the three representative methods for the pipe deterioration assessment such as evaluation methods 1995 and 2002, and the state evaluation method through literature reviews. The ten assessment factors were selected by considering large-diameter pipe characteristics as well as common factors with high priority in the three methods. Also, the weighting of the factors was estimated by a regression equation from experiments and analysis on domestic large-diameter pipelines and expert survey data. It is expected that the new assessment model developed by analysing the existing three models is more reliable to assess the deterioration of large-diameter pipe networks.

Structural Integrity and Safety Margin Evaluation for Thinned Pipe Component (감육배관의 구조건전성 및 안전여유도 평가 기술)

  • Lee, Sung-Ho;Kim, Tae-Ryong;Kim, Bum-Nyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.264-267
    • /
    • 2004
  • Wall thinning of carbon steel pipe components due to Flow-Accelerated Corrosion (FAC) is one of the most serious threats to the integrity of steam cycle piping systems in Nuclear Power Plants (NPP). Since the mid-1990s, secondary side piping systems in Korean NPPs have experienced wall thinning, leakages and ruptures caused by FAC. Korea Electric power Research Institute (KEPRI) and Korea Hydro & Nuclear Power Co., LTD. (KHNP) have conducted a study to develop the methodology for systematic pipe management and established the Korean Thinned Pipe Management Program (TPMP). To effectively maintain the integrity of piping system, FAC engineer should understand the criterions of the structural integrity evaluation and the safety margin assessment for the thinned pipe component. This paper describes the technical items of TPMP, and shows the example of the integrity evaluation and safety margin assessment for three thinned pipe component of a NPP.

  • PDF

Evaluation of the Burst Pressure for Rectangular Wall-thinning of CANDU Feeder Pipe (사각 감육을 고려한 중수로 공급자관 파열압력 평가)

  • Kwang Soo Kim;Min Kyu Kim;Doo Ho Cho;Jae Joon Jeong
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.28-35
    • /
    • 2021
  • The flow accelerated corrosion (FAC) is one of significant aging and degradation mechanism and can affect structural integrity of CANDU feeder pipes. Pipe burst can occur under normal operation pressure (min. 10 MPa) if wall-thinning of the feeder pipe due to FAC is accumulated. Previous studies considered simple shapes of feeder pipe with local wall-thinning in order to conservatively assess structural integrity of wall-thinned feeder pipe. In this paper, a new FE model is developed, having an actual shape of the feeder pipe (double bent) as well as the actual wall-thinning shape and location based on the in-service inspection result. Then, the burst pressure assessment of the wall-thinned feeder pipe is performed using lower bound limit load analysis considering elastic-perfectly plastic material. In addition, an improved formulation to predict the burst pressure of the wall-thinned feeder pipe is presented and the safety margin is compared with an existing assessment method.

Assessment of the Deterioration of Large-Diameter Pipe Networks (II) : Application to Metropolitan Multi-Regional Water Supply System (1st Phase) (대구경 관로의 노후도 평가 연구(II) : 수도권 광역상수도(1단계) 적용)

  • Lee, Seung-Hyun;Yoon, Ki-Yong;Kim, Eung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1096-1101
    • /
    • 2014
  • This study (II) has appled the new assessment model of large-diameter pipe deterioration proposed by the study (I) to the metropolitan multi-regional water supply system (1st phase). In the total 30 pipelines, 24 and 27 pipelines were required for improvement as results from the existing evaluation methods 1995 and 2002, respectively. The assessment results were almost similar in the new developed model and the existing methods. It is founded that the new simple model developed in this study can produce reliable results, consistent with those from the existing methods requiring many factors for a pipe deterioration assessment. It is therefore expected that the new model would be helpful in practical applications of a pipe deterioration assessment since it can save both temporal and economic costs for experiments and analysis, as compared with existing assessment methods.

A Study on the Estimating Burst Pressure Distributions for Reliability Assessment of API 5L X65 Pipes (API 5L X65 배관의 신뢰도 평가를 위한 파열압력 분포 추정에 관한 연구)

  • Kim, Seong-Jun;Kim, Dohyun;Kim, Cheolman;Kim, Woosik
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.4
    • /
    • pp.597-608
    • /
    • 2020
  • Purpose: The purpose of this paper is to present a probability distribution of the burst pressure of API 5L X65 pipes for the reliability assessment of corroded gas pipelines. Methods: Corrosion is a major cause of weakening the residual strength of the pipe. The mean residual strength on the corrosion defect can be obtained using the burst pressure code. However, in order to obtain the pipe reliability, a probability distribution of the burst pressure should be provided. This study is concerned with estimating the burst pressure distribution using Monte Carlo simulation. A response surface method is employed to represent the distribution parameter as a model of the corrosion defect size. Results: The experimental results suggest that the normal or Weibull distribution should be suitable as the probability distribution of the burst pressure. In particular, it was shown that the probability distribution parameters can be well predicted by using the depth and length of the corrosion defect. Conclusion: Given a corrosion defect on the pipe, its corresponding burst pressure distribution can be provided at instant. Subsequently, a reliability assessment of the pipe is conducted as well.

An Evaluation Method for the Musculoskeletal Hazards in Wood Manufacturing Workers Using MediaPipe (MediaPipe를 이용한 목재 제조업 작업자의 근골격계 유해요인 평가 방법)

  • Jung, Sungoh;Kook, Joongjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.117-122
    • /
    • 2022
  • This paper proposes a method for evaluating the work of manufacturing workers using MediaPipe as a risk factor for musculoskeletal diseases. Recently, musculoskeletal disorders (MSDs) caused by repeated working attitudes in industrial sites have emerged as one of the biggest problems in the industrial health field while increasing public interest. The Korea Occupational Safety and Health Agency presents tools such as NIOSH Lifting Equations (NIOSH), OWAS (Ovako Working-posture Analysis System), Rapid Upper Limb Assessment (RULA), and Rapid Entertainment Assessment (REBA) as ways to quantitatively calculate the risk of musculoskeletal diseases that can occur due to workers' repeated working attitudes. To compensate for these shortcomings, the system proposed in this study obtains the position of the joint by estimating the posture of the worker using the posture estimation learning model of MediaPipe. The position of the joint is calculated using inverse kinetics to obtain an angle and substitute it into the REBA equation to calculate the load level of the working posture. The calculated result was compared to the expert's image-based REBA evaluation result, and if there was a result with a large error, feedback was conducted with the expert again.

Review on the Integrity Evaluation and Maintenance of Wall-Thinned Pipe (감육배관의 건전성평가 및 정비 관련 기술기준 고찰)

  • Lee, Sung Ho;Lee, Yo Seob;Kim, Hong Deok;Lee, Kyoung Soo;Hwang, Kyeong Mo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.51-60
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion, cavitation, flashing and/or liquid droplet impingement, is a main concern in secondary steam cycle piping system of nuclear power plants in terms of safety and operability. Thinned pipe management program (TPMP) has being developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning. In this paper, newest technologies, standards and regulations related to the integrity assessment, repair and replacement of thinned pipe component are reviewed. And technical improvement items in TPMP to secure the reliability and effectiveness are also presented.

Development of Daylighting System with Modified Light Pipe for Longer Transmission Distance and Higher Illuminance

  • Vu, Hoang;Kim, Youngil;Park, Chaehwan;Park, Jongbin;Bae, Hojune;Shin, Seoyong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.93-102
    • /
    • 2021
  • In this research, we present a natural lighting system with transmission distance of 30m and lighting efficiency of 35% (30m standard) for operating hours of 7h/day (based on clear sky). The system is composed of parabolic reflective mirror and modified light pipe that can secure more than 88% of light concentration efficiency. The light loss rate of newly designed light pipe transmission system is demonstrated to 0.8 %/m in the straight-line part and 2%/m in the curved part. Modified light pipe daylighting system shows better performance over fiber optic daylighting system in terms of transmission distance (1.5 times longer) and illuminance (3.05 times higher).

A Review of the Progress with Statistical Models of Passive Component Reliability

  • Lydell, Bengt O.Y.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.349-359
    • /
    • 2017
  • During the past 25 years, in the context of probabilistic safety assessment, efforts have been directed towards establishment of comprehensive pipe failure event databases as a foundation for exploratory research to better understand how to effectively organize a piping reliability analysis task. The focused pipe failure database development efforts have progressed well with the development of piping reliability analysis frameworks that utilize the full body of service experience data, fracture mechanics analysis insights, expert elicitation results that are rolled into an integrated and risk-informed approach to the estimation of piping reliability parameters with full recognition of the embedded uncertainties. The discussion in this paper builds on a major collection of operating experience data (more than 11,000 pipe failure records) and the associated lessons learned from data analysis and data applications spanning three decades. The piping reliability analysis lessons learned have been obtained from the derivation of pipe leak and rupture frequencies for corrosion resistant piping in a raw water environment, loss-of-coolant-accident frequencies given degradation mitigation, high-energy pipe break analysis, moderate-energy pipe break analysis, and numerous plant-specific applications of a statistical piping reliability model framework. Conclusions are presented regarding the feasibility of determining and incorporating aging effects into probabilistic safety assessment models.

Development for Life Assessment System for Pipes of Thermal Power Plants

  • Hyun, Jung-Seob;Heo, Jae-Sil;Kim, Doo-Young;Park, Min-Gyu
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.583-588
    • /
    • 2016
  • The high-temperature steam pipes of thermal power plants are subjected to severe conditions such as creep and fatigue due to the power plant frequently being started up and shut down. To prevent critical pipes from serious damage and possible failure, inspection methods such as computational analysis and online piping displacement monitoring have been developed. However, these methods are limited in that they cannot determine the life consumption rate of a critical pipe precisely. Therefore, we set out to develop a life assessment system, based on a three-dimensional piping displacement monitoring system, which is capable of evaluating the life consumption rate of a critical pipe. This system was installed at the "M" thermal power plant in Malaysia, and was shown to operate well in practice. The results of this study are expected to contribute to the increase safety of piping systems by minimizing stress and extending the actual life of critical piping.