• Title/Summary/Keyword: Pintle Nozzle

Search Result 62, Processing Time 0.023 seconds

Effects of Pintle Shape on Nozzle Flow Characteristics of Variable Nozzle Throat Area Pintle Thrusters (핀틀 형상이 가변 노즐목 핀틀 추력기의 노즐 유동에 미치는 영향)

  • Lee, Yong-Wu;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.275-278
    • /
    • 2010
  • By changing the nozzle throat area during the operation, thrust of a pintle thruster can be adjusted easily such as a liquid propulsion. In this paper, numerical analysis was carried out for SNECMA's pintle thruster with different pintle shapes. Flow field and aerodynamic load changed drastically with pintle shapes. Bore in the pintle decreased aerodynamic load significantly.

  • PDF

Numerical Study on Dynamic Characteristics of Pintle Nozzle for Variant Thrust: Part 2 (가변 추력용 핀틀 노즐의 동적 특성에 관한 수치적 연구: Part 2)

  • Heo, Jun-Young;Kim, Ki-Wan;Sung, Hong-Gye;Yang, June-Seo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.123-128
    • /
    • 2012
  • According to the sequence of pintle operation, the performance characteristics of pintle nozzles are analyzed. The pintle movement was simulated using unsteady numerical techniques, the response lag and sensitivity at the chamber and nozzle are estimated for movable pintle. Three operation sequences of the pintle are considered for evaluating whether the rate of the chamber pressure increase and the operation sequence will have any significant impact towards the rocket performance. Three operation sequencies are as following; the pintle moves toward the nozzle throat, it turns instantly (case 1), stops at the nozzle throat for some time(0.5sec) (case 2), and stops at the nozzle throat (case 3). As a result, the dynamic characteristics according to the operation sequence and pintle shape were analyzed to take account the rocket performance.

  • PDF

Numerical Study of the effect of pintle shape on the thrust level (핀틀 형상이 추력 크기에 미치는 영향에 대한 수치해석적 연구)

  • Kim, Joung-Keun;Park, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.476-482
    • /
    • 2009
  • The effect of pintle shape on the thrust level of pintle-nozzle Solid Rocket Motor(PNSRM) was studied numerically using the Spalart-Allmaras turbulent model of Fluent. Mass flow rate of PNSRM was always less than theoretical value and the extent of decrease in mass flow rate grew in the large pintle because of increase in the relative boundary layer thickness between pintle body and nozzle wall. The bigger pintle size was, the more thrust of pintle tip pressure was obtained. Meanwhile the more thrust of nozzle and chamber pressure decreased. Hence, total thrust of big pintle was less than a small pintle under same throat area condition. Specific impulse was relatively flat for all pintle shape.

Computational Investigation of Pintle Nozzle Flow (핀틀 노즐 유동장의 수치해석적 연구)

  • Kim, Joung-Keun;Lee, Ji-Hyung;Chang, Hong-Been
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.35-41
    • /
    • 2009
  • Both the nozzle expansion ratio and the chamber pressure are simultaneously and continuously changed according to pintle movement, resulting in a different internal flow structure and flow separation characteristics. In this paper, the pintle position effect on nozzle flow structure and separation phenomena is analyzed by experimental-aided Computational Fluid Dynamic(CFD). Among the turbulent models for RANS(Reynold Averaged Navier Stokes) in Fluent, Spalart-Allmaras model is better agreement with the nozzle wall pressure distribution attained by cold-flow test than other models. And even if a conical nozzle is used, there is a shock structure similar to cap-shock pattern mainly occurred in contoured or shaped optimized nozzle because of internal shock generated from pintle tip flow separation.

Evaluation of Thermal Strain Effect on Pintle Nozzle using by FSI (유체-구조 연성해석을 이용한 핀틀-노즐 열변형 영향 평가)

  • La, Giwon;Lee, Kyungwook;Lee, Jongkwang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1048-1050
    • /
    • 2017
  • In this study, Numerical simulations of the pintle-nozzle were performed to evaluate the thermal strain effect using by 1-way fluid structure interaction analysis(FSI). we carried out computational fluid dynamics analysis to obtain the pressure and temperature fields of pintle nozzle. we then used the data as the load condition for a FSI separately. and thermal strain of the pintle was checked. In order to confirm the change of thrust characteristic by deformation, we are carrying out 2-way FSI.

  • PDF

Performance Analysis of the Pintle Thruster Using 1-D Simulation -I : Steady State Characteristics (1-D 시뮬레이션을 활용한 핀틀추력기의 성능해석 -I : 정상상태 특성)

  • Kim, Jihong;Noh, Seonghyeon;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.304-310
    • /
    • 2015
  • Pintle thrusters use pintle stroke to change nozzle throat area, and this controls thrust. Using MATLAB, one-dimensional simulation has been investigated and the results are compared to those of cold flow tests and computational fluid dynamics for the pintle thruster of Chungnam National University. The prediction based on one-dimensional flow theory shows good agreement with measurements for chamber pressure, but deviates for thrust, partly because of nozzle wall separation. Computational results show that nozzle wall separation occurs at an early stage of nozzle expansion, near the design nozzle throat, for the course of pintle strokes. Empirical thrust prediction incorporates nozzle wall separation, and thus 1-D simulation using empirical thrust prediction showed good results for an early stage of pintle stroke.

Numerical Study on an E-D Nozzle Characteristics with Various Pintle Inflection Angles (핀틀 변곡 각도에 따른 E-D 노즐 특성에 대한 전산수치해석 연구)

  • Park, Sanghyeon;Moon, Taeseok;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.19-27
    • /
    • 2018
  • In this study, a numerical study was conducted to characterize the E-D nozzle which changes according to the nozzle pressure ratios. Three different numerical analysis models were designed by changing the pintle inflection angles. When the nozzle pressure ratio is low, the outside air flows into the E-D nozzle to form an open flow field. As the nozzle pressure ratio increases, the flow transition occurs to become the closed flow field where the recirculation region is isolated inside the nozzle. Also, the highest thrust coefficient was obtained in the analytical model with high pintle inflection angle at all nozzle pressure ratios.

Numerical Study on Dynamic Characteristics of Pintle Nozzle for Variant Thrust (가변 추력용 핀틀 노즐의 동적 특성에 관한 수치적 연구)

  • Park, Hyung-Ju;Kim, Li-Na;Heo, Jun-Young;Sung, Hong-Gye;Yang, June-Seo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.213-217
    • /
    • 2011
  • Unsteady numerical simulations of pintle nozzles were implemented for solid rocket thrust vector control. The variation of pintle location was considered using unsteady numerical techniques, and dynamic characteristics of various pintle models were investigated. In order to consider the variation of the pintle location, a moving mesh method was applied. The effects of shape and location of the pintle nozzle have been analytically investigated. And the results were compared with numerical results. The chamber pressure, mass flow and thrust are analyzed to take account dynamic characteristics of pintle performance.

  • PDF

Numerical Analysis and 2-D Experiment of Heat Transfer Coefficient on the Pintle of a Controllable Thruster Nozzle (고온 고압 환경에서 가변추력기용 핀틀의 열전달 계수에 대한 수치적 연구 및 2D 실험)

  • Park, Soon Sang;Moon, Young gi;Kawk, Jae Su
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.4
    • /
    • pp.24-28
    • /
    • 2012
  • In this paper, 2-D experiment and steady-state computational fluid analysis were conducted for measuring the hear transfer coefficient of pintle type controllable thruster in high pressure and temperature. In case of 2-D experiment, transient liquid crystal technique was used for measuring heat transfer coefficient for the 2-D pintle model. The experimental result was used to validate the CFD result. The CFD results well predicted the heat transfer coefficient on the pintle surface except the nozzle downstream region, where the results by CFD was higher than experimental results. The CFD results were also compared with the result by Bartz equation and the it was shown that the Bartz equation overestimated the heat transfer coefficient on the nozzle throat as much as 80%.

Investigation of Effect of Shape of Pintle on Drag and Thrust Variation (핀틀 형상에 따른 추력 및 항력 변화 연구)

  • Park, Jong-Ho;Kang, Min-Ho;Kim, Joung-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.237-243
    • /
    • 2010
  • In this study, the effect of the shape of a pintle(obstacle) on thrust-modulation performance and drag in a pintle rocket was investigated by a cold flow test and by computational fluid dynamics. Pintle movement caused a monotonic increase in the chamber pressure. Thrust generated by the pressure distribution on the pintle body was linearly changed to the chamber pressure, and this thrust was greater than that generated by the nozzle-wall pressure distribution. Because the shock pattern in the nozzle changes with the shape of the pintle body and pressure ratio, the thrust generated by the nozzle-wall pressure is not directly affected by chamber pressure. The drag due to the pintle(obstacle) can be minimized for a fully linear pintle shape, regardless of chamber pressure.