• Title/Summary/Keyword: Pink water

Search Result 56, Processing Time 0.018 seconds

Simultaneous analysis of ethylene glycol and glycolic acid in bio-specimens by GC/MS (생체시료에서 GC/MS에 의한 에틸렌글리콜 및 대사체인 글리콜산 동시분석)

  • Lee, Joon-Bae;Park, Mee-Jung;Sung, Tae-Myung;Choi, Byung-Ha;You, Jae-Hoon;Shon, Shung-Kun;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.544-550
    • /
    • 2010
  • Mistaking pink colored thermal oil for grape wine, a victim drank the oil to death which was analyzed to contain 39% of ethylene glycol. Thermal oil could be used for heat transfer to prevent the malfunction due to the high pressure in the boiler operated at high temperature when using water. Main component of thermal oil is known to be mineral oil or ethylene glycol. From the blood and other tissue of the victim from autopsy, ethylene glycol and its metabolite were simultaneously analyzed by GC/MS after extraction under acidic condition with acetonitrile followed by derivatization with BSTFA. About 0.2 g of the specimens were pretreated with 50 uL of 0.5 M HCl solution to keep acidic condition, then dehydrated with anhydrous sodium sulfate followed by concentration under nitrogen stream. Ethylene glycol and glycolic acid concentration in blood was measured to be $2,755\;{\mu}g/mL$ and $174\;{\mu}g/mL$ respectively. In other specimen, the concentration of ethylene glycol and glycolic acid was $860\;{\mu}g/g\sim1,290\;{\mu}g/g$ and $93\;{\mu}g/g\sim134\;{\mu}g/g$. Especially, crystal appeared in kidney which was supposed xalate from the metabolite of ethylene glycol.

Rapid Analysis of Boric Acid in Nickel Plating Solutions (니켈도금액중의 붕산 신속정량법)

  • 염희택
    • Journal of the Korean institute of surface engineering
    • /
    • v.3 no.1
    • /
    • pp.7-12
    • /
    • 1970
  • Only mannitol or glycerine is generally used for the determination of boric acid in a nickel plating solution in order to make its acidic property so strong that it can be titrated with NaOH. However, these solutions give very amgiguous color change of indicator due to the precipitation of nickel salts . Therefore, only experienced dchemistsorwell trained workimen can accurately confirm the actual end point of the titratiion. For eliminating such interference of nickel salts and easily confirming the end point by any persons , the author attempted to find out a solution which produces no precipitates during the titration in these experiments, and also he tried to funish the reason for ambiguousness in titration. The following results were obtained after many experiments. (1) In any titrations which produce nickel salts such nI(oh)$_2$, the salt is formed umption very approximate to the end point, which shows some error by the consumption of titrant(NaOH) . Then, the pink color of phenolphthalein is absorbed by Ni(OH)$_2$ and the pH jumping at the end pint is also diminished to as little as less than 15% of the total phenophthalein ph range. (2) Known methods by complex salts of citrate,w hich do not produce precipitates of Ni(OH)$_2$, are also not very satisfactory, because, the pH jumping at the end point is only about 35% and the color change of phenolphthalein is form blue-green to purple-blue. (3) New method by complex salts of oxalate were attempted in these experiments. They also did not produce precipitates of Ni(OH)$_2$ and were very satisfactory in color change at the end of point was about 65% and the color change was from blue-green to purpled. In this methods, analytica cost was minimized by the use of less amounts of cheaper chemicals than the conventional citrates complex methods. The mixture of chemicals used was composed methods. The mixture of chemical used was composed of 37g/ι of sodium oxalate(Na$_2$C$_2$O$_4$$.$5H$_2$O), 2g/ι of phenolphthalein, and 400ml /ι of glycerin. The accuracy of analysis was within the error of 0.5%. (4) The procedure of analysis was as follows. One ml of nickel plating solution was taken out and to it were added 20ml of water and 20 ml of the above mixture for the indicator. The solution was titrated with 0.1N NaOH. The quantity of boric acid was calculated by the following equation. Boric acid (g/ι) = 6.184${\times}$F${\times}$ml .

  • PDF

Comparison on Physicochemical Properties of Korean Kidney Bean Starch according to Varieties (품종에 따른 강낭콩 전분의 이화학적 성질비교)

  • Cho, Eun-Ja;Kim, Sung-Kon;Park, Sun-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.787-793
    • /
    • 1998
  • Physicochemical properties of starch of three cultivars of Korean kidney Bean Starches, Pink (PKB), Red (RKB) and White (WKB) were studied. Starch granule was oval/round and smooth in all samples. The amylograms showed a continuous increase of viscosity without peak during heating. The water-binding capacities of starches of PKB, RKB and WKB were 102.1%, 94.7% and 106.9%, respectively. The swelling powers were rapidly incresed in all samples. The amylose content, blue value and relative viscosity of kidney bean starches were $31.1{\sim}32.8%,{\;}0.64{\sim}0.66$ and $2.27{\sim}2.61{\;}mlg^{-1}$, respectively. The transmittance of starch suspension was linearly increased as the temperature raised from $65^{\circ}C{\;}to{\;}85^{\circ}C$. The gelatinization temperature ranges determined by differential scanning calorimetry (DSC) were $71.1{\sim}86.9^{\circ}C for PKB, $71.1{\sim}86.0^{\circ}C$ for RKB and $60.8{\sim}77.9^{\circ}C$ for WKB.

  • PDF

Mineralogical Studies of the Tourmaline for Medicinal Applications by Production Localities (본초 광물로서의 활용을 위한 산지별 전기석의 광물학적 연구)

  • Jie, Yan;Kim, Seon-ok;Park, Hee Yul;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.345-358
    • /
    • 2018
  • In this study, we have performed electron probe micro analyzer (EPMA), X-ray differaction (XRD), inductively coupled plasma spectroscopy (ICP), Fourier transform Raman spectroscopy (FT-Raman), far-infrared (FIR), nuclear magnetic resonance (NMR), and pH-DO Analyses for characterizing medicinal mineralogy aspect of the black tourmaline (Shantung, china), black and pink tourmaline (Minas Geraris, Brazil), black touemaline (Daeyu mine, Korea). In addition, heating effects of the tourmaline sauna as well as the effects of tourmaline powder-added soap on skin troubles have been investigated. It has been revealed that chemical composition of the tourmaline is either high in Fe-, Al-, B-rich types. Ratio of the K-Ca, Na-K, and Fe-B reflects the component change property of solid solution. $CaO/CaO+Na_2O$ and MgO/FeO+MgO ratio show high positive correlation. When tourmaline reacts with distilled water, extended reaction time DO values approximately decrease and it stabilizes at DO = 10. Otherwise, pH values increase until 6 hours and it stabilizes at pH = 8 after 24 hours. Distilled water changes to alkaline when it reacts with tourmaline powder and particles. Tourmaline showed lower absorption spectrum strength and transmittance at short wave, where absorption spectrum wavelength and strength were determined by the content of the composition elements and characteristics of crystallography. Increase of the Fe content has been confirmed to be the cause for the reduction of irradiation. For the chemical composition and spectral property of the tourmaline particle samples, it has been found that Si and Fe contents show positive correlation with Far-Infrared irradiation, while Al and Mg contents show negative correlation. For tourmaline powder, it has been confirmed that $^{17}O-NMR$ FWHM (full width at half maximum) decreases when reacts with distilled water. Tourmaline sauna (approximately $100^{\circ}C$) was found to increase $0.5-1.5^{\circ}C$ of body temperature, average of 12 heartbeat, and 10mg Hg of blood pressure. Tourmaline soap had very good aesthetic effect to skin and was confirmed to have above the average improvements to skin troubles (e.g., allergy or atopy).

An Experimental Study on Pearl Oyster (Pinctada fucata) Culture (인공진주 양식에 관한 시험연구)

  • CHO Chang-Hwan;KWON Woo-Seop;KIM Moo-Sang;KIM Nam-Gil;LIM Dong-Taik
    • Journal of Aquaculture
    • /
    • v.1 no.1
    • /
    • pp.85-102
    • /
    • 1988
  • An experimental study on seedling production and wintering to develop pearl oyster, Pinctada fucata culture in Korea was carried out. from December 1986 to November 1988 in waters of Kori and of Seogwipo as wintering and of Eogu as culturing grounds. All pearl oysters as the sample were imported from Japan. The highest water temperature at Eogu was $23.6^{\circ}C$ in August and the lowest at Kori and Seogwipo were $13.2^{\circ}C$ and $14.0^{\circ}C$c in February, respectively, Phytoplankton was relatively plentiful but mortality of pearl oysters was $20.5\%$, which was twice at Seogwipo, due to high amount of suspended muds. It shows that Seogwipo is better wintering ground even though the amount of phytoplankton is lower than Kori. Average rates of pearl production after 6-months and 15-months period were $58.2\%$ and $48.3\%$ respecitively. Thickness of pearl layer and coating rate were also satisfactory. More than half of the pearls produced was so-called the pink-pearl, the best colour. About $10\%$ of them was the best quality. There were three peaks of D-shape larvae from July to September and it took about one month for D-shape larvae to become seed-shells. Settling was satisfactory and most of them settled at 1$\~$3 m layer and the best was 2 m-layer. Success of settling was supposed due to high water temperature and low precipitation than the normal year.

  • PDF

Hydrogeochemical Research on the Characteristic of Chemical Weathering in a Granitic Gatchment (水文化學的 資料를 통한 花崗岩質 流域의 化學的 風化特性에 關한 硏究)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.1
    • /
    • pp.1-15
    • /
    • 1993
  • This research aims to investigate some respects of chemical weathering processes, espcially the amount of solute leaching, formation of clay minerals, and the chemical weathering rate of granite rocks under present climatic conditions. For this purpose, I investigated geochemical mass balance in a small catchment and the mineralogical composition of weathered bedrocks including clay mineral assemblages at four res-pective sites along one slope. The geochemical mass blance for major elements of rock forming minerals was calculated from precipitation and streamwater data which are measured every week for one year. The study area is a climatically and litholo-gically homogeneous small catchment($3.62Km^2$)in Anyang-shi, Kyounggi-do, Korea. The be-drock of this area id Anyang Granite which is composed of coarse-giained, pink-colored miner-als. Main rock forming minerals are quartz, K-Feldspar, albite, and muscovite. One of the chracteristics of this granite rock is that its amount of Ca and Mg is much lower than other granite rock. The leaching pattern in the weathering profiles is in close reltion to the geochemical mass balance. Therefore the removal or accumulation of dissolved materials shows weathering patterns of granite in the Korean peninsula. Oversupplied ions into the drainage basin were $H^+$, $K^+$, Fe, and Mn, whereas $Na^2+$, $Mg^2+$, $Ca^2+$, Si, Al and $HCO-3^{-}$ were removed from the basin by the stream. The consumption of hydrogen ion in the catchment implies the hydrolysis of minerals. The surplus of $K^+$ reflects that vegetation is in the aggravation stage, and the nutrient cycle of the forest in study area did not reach a stable state. And it can be also presumed that the accumulation of $K^+$ in the top soil is related to the surplus of $K^+$. Oversupplied Fe and Mn were presumed to accumulate in soil by forming metallic oxide and hydroxide. In the opposite, the removal of $Na^+$, Si, Al resulted from the chemical weathering of albite and biotite, and the amount of removal of $Na^+$, Si, Al reflected the weathering rate of the bedrock. But $Ca^2+$ and $Mg^2+$ in stream water were contaminated by the scattered calcareous structures over the surface. Kaolinite is a stable clay mineral under the present environment by the thermodynamical analysis of the hydrogeochemical data and Tardy's Re value. But this result was quite different from the real assemblage of clay miner-als in soil and weathered bedrock. This differ-ence can be explained by the microenvironment in the weathering profile and the seasonal variation of climatic factors. There are different clay forming environments in the stydy area and these differences originate from the seasonal variation of climate, especially the flushing rate in the weathering profile. As it can be known from the results of the analysis of thermodynamic stability and characteristics of geochemical mas balance, the climate during winter and fall, when it is characterized by the low flushing rate and high solute influx, shows the environmental characteristics to from 2:1 clay minerals, such as illite, smectite, vermiculite and mixed layer clay minerals which are formed by neoformation or transformation from the primary or secondary minerals. During the summer and spring periods, kaoli-nite is a stable forming mineral. However it should consider that the other clay minerals can transformed into kaolinite or other clay minerals, because these periods have a high flushing rte and temperature. Materials which are directly regulated by chemical weathering in the weathered bedrock are $Na^+$, Si, and Al. The leaching of Al is, however, highly restricted and used to form a clay mineral, and that of Si falls under the same category. $Na^+$ is not taked up by growing veget ation, and fixed in the weathering profile by forming secondary minerals. Therefore the budget of $Na^+$ is a good indicator for the chemical weathering rate in the study area. The amount of chemical weathering of granite rocks was about 31.31g/$m^2+$/year based on $Na^+$ estimation.

  • PDF