• Title/Summary/Keyword: Ping

Search Result 1,346, Processing Time 0.026 seconds

Seismic behavior of reinforced concrete T-shaped columns under compression-bending-shear and torsion

  • Ping, Chen Zong;Weiwei, Su;Yang, Yang
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.431-444
    • /
    • 2021
  • T-shaped column is usually used as side column in buildings, which is one of the weak members in structural system. This paper presented a quasi-static cyclic loading experiment of six specimens of reinforced concrete (RC) T-shaped columns under compression-flexure-shear-torsion combined loadings to investigate the effect in the ratio of torsion to moment (T/M) and axial compression ratio (n) and height-thickness ratio of flange plate (φ) on their seismic performance. Based on the test results, the failure characteristics, hysteretic curves, ductility, energy dissipation, stiffness degradation and strength degradation were analyzed. The results show that the failure characteristics of RC T-shaped columns mainly depend on the ratio of torsion to moment, which can be divided into bending failure, bending-torsion failure and shear-torsion failure. With the increase of T/M ratio, the torsion ductility coefficient increased, and in a suitable range, the torsion and horizontal displacement ductility coefficient of RC T-shaped columns could be effectively improved with the increase of axial compression ratio and the decrease of height-thickness ratio of flange plate. Besides, the energy dissipation capacity of the specimens mainly depended on the bending and shear energy dissipation capacity. On the other hand, the increase of axial compression ratio and the ratio of torsion to moment could accelerate the torsional and bending stiffness degradation of RC T-shaped columns. Moreover, the degradation coefficient of torsion strength was between 0.80 and 0.98, and that of bending strength was between 0.75 and 1.00.

Role of High-affinity Choline Transporter 1 in Colonic Hypermotility in a Rat Model of Irritable Bowel Syndrome

  • Lin, Meng-juan;Yu, Bao-ping
    • Journal of Neurogastroenterology and Motility
    • /
    • v.24 no.4
    • /
    • pp.643-655
    • /
    • 2018
  • Background/Aims Irritable bowel syndrome (IBS) is a common disease characterized by intestinal dysmotility, the mechanism of which remains elusive. We aim to determine whether the high-affinity choline transporter 1 (CHT1), a determinant of cholinergic signaling capacity, modulates intestinal motility associated with stress-induced IBS. Methods A rat IBS model was established using chronic water avoidance stress (WAS). Colonic pathological alterations were evaluated histologically and intestinal motility was assessed by intestinal transit time and fecal water content (FWC). Visceral sensitivity was determined by visceromotor response to colorectal distension. RT-PCR, western blotting, and immunostaining were performed to identify colonic CHT1 expression. Contractility of colonic muscle strips was measured using isometric transducers. enzyme-linked immunosorbent assay was used to measure acetylcholine (ACh). We examined the effects of MKC-231, a choline uptake enhancer, on colonic motility. Results After 10 days of WAS, intestinal transit time was decreased and fecal water content increased. Visceromotor response magnitude in WAS rats in response to colorectal distension was significantly enhanced. Protein and mRNA CHT1 levels in the colon were markedly elevated after WAS. The density of CHT1-positive intramuscular interstitial cells of Cajal and myenteric plexus neurons in WAS rats was higher than in controls. Ammonium pyrrolidine dithiocarbamate partly reversed CHT1 upregulation and alleviated colonic hypermotility in WAS rats. Pharmacological enhancement of CHT1 activity by MKC-231 enhanced colonic motility in control rats via upregulation of CHT1 and elevation of ACh production. Conclusion Upregulation of CHT1 in intramuscular interstitial cells of Cajal and myenteric plexus neurons is implicated in chronic stress-induced colonic hypermotility by modulation of ACh synthesis via nuclear factor-kappa B signaling.

Comprehensive MicroRNAome Analysis of the Relationship Between Alzheimer Disease and Cancer in PSEN Double-Knockout Mice

  • Ham, Suji;Kim, Tae Kyoo;Ryu, Jeewon;Kim, Yong Sik;Tang, Ya-Ping;Im, Heh-In
    • International Neurourology Journal
    • /
    • v.22 no.4
    • /
    • pp.237-245
    • /
    • 2018
  • Purpose: Presenilins are functionally important components of ${\gamma}$-secretase, which cleaves a number of transmembrane proteins. Manipulations of PSEN1 and PSEN2 have been separately studied in Alzheimer disease (AD) and cancer because both involve substrates of ${\gamma}$-secretase. However, numerous clinical studies have reported an inverse correlation between AD and cancer. Interestingly, AD is a neurodegenerative disorder, whereas cancer is characterized by the proliferation of malignant cells. However, this inverse correlation in the PSEN double-knockout (PSEN dKO) mouse model of AD has been not elucidated, although doing so would shed light onto the relationship between AD and cancer. Methods: To investigate the inverse relationship of AD and cancer under conditions of PSEN loss, we used the hippocampus of 7-month-old and 18-month-old PSEN dKO mice for a microRNA (miRNA) microarray analysis, and explored the tumorsuppressive or oncogenic role of differentially-expressed miRNAs. Results: The total number of miRNAs that showed changes in expression level was greater at 18 months of age than at 7 months. Most of the putative target genes of the differentially-expressed miRNAs involved Cancer pathways. Conclusions: Based on literature reviews, many of the miRNAs involved in Cancer pathways were found to be known tumorsuppressive miRNAs, and their target genes were known or putative oncogenes. In conclusion, the expression levels of known tumor-suppressive miRNAs increased at 7 and 18 months, in the PSEN dKO mouse model of AD, supporting the negative correlation between AD and cancer.

Efficacy and Safety of OnabotulinumtoxinA in Patients With Neurogenic Detrusor Overactivity Caused by Spinal Cord Injury: A Systematic Review and Meta-Analysis

  • Li, Guang-Ping;Wang, Xiao-Yan;Zhang, Yong
    • International Neurourology Journal
    • /
    • v.22 no.4
    • /
    • pp.275-286
    • /
    • 2018
  • Purpose: OnabotulinumtoxinA (BoNT-A) is a promising therapy for treating neurogenic detrusor overactivity (NDO) in individuals with spinal cord injury (SCI). This systematic review and meta-analysis aimed to carry out an in-depth review and to make an objective estimation of the efficacy and safety of BoNT-A on NDO after SCI. Methods: The PubMed, Embase, and Cochrane databases were searched for all relevant articles published from 2001 to 2016 that referred to NDO, SCI, and BoNT-A or botulinum toxin A. All data were recorded in an Excel spreadsheet by 2 individual reviewers. Review Manager version 5.3 was used to carry out the meta-analysis. Results: This analysis included 17 studies involving 1,455 patients. Compared with placebo and baseline, BoNT-A was effective in increasing maximum cystometric capacity, volume at first involuntary detrusor contraction, cystometric bladder capacity (all P<0.00001), compliance (P=0.001), and the number of patients with complete dryness (P=0.0003), and decreasing detrusor pressure, the number of patients with no involuntary detrusor contractions, the maximum flow rate, the incidence of detrusor overactivity (all P<0.00001), and the number of urinary incontinence episodes (P=0.001). There were no statistically significant differences between doses of 200 U and 300 U or between injections into the detrusor and submucosa. There were no life-threatening adverse events. Conclusions: BoNT-A is effective and safe in treating NDO after SCI. There were no statistically significant differences between doses of 200 U and 300 U or between injecting into the detrusor and submucosa. However, more high-quality randomized controlled trials are still needed.

Ginsenoside compound K protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury via inhibition of nuclear factor-κB, p38, and JNK MAPK pathways

  • Lu, Shan;Luo, Yun;Zhou, Ping;Yang, Ke;Sun, Guibo;Sun, Xiaobo
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.95-104
    • /
    • 2019
  • Background: Oxidized low-density lipoprotein (ox-LDL) causes vascular endothelial cell inflammatory response and apoptosis and plays an important role in the development and progression of atherosclerosis. Ginsenoside compound K (CK), a metabolite produced by the hydrolysis of ginsenoside Rb1, possesses strong anti-inflammatory effects. However, whether or not CK protects ox-LDL-damaged endothelial cells and the potential mechanisms have not been elucidated. Methods: In our study, cell viability was tested using a 3-(4, 5-dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide (MTT) assay. Expression levels of interleukin-6, monocyte chemoattractant protein-1, tumor necrosis factor-${\alpha}$, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 were determined by enzyme-linked immunosorbent assay and Western blotting. Mitochondrial membrane potential (${\Delta}{\Psi}m$) was detected using JC-1. The cell apoptotic percentage was measured by the Annexin V/ propidium iodide (PI) assay, lactate dehydrogenase, and caspase-3 expression. Apoptosis-related proteins, nuclear factor $(NF)-{\kappa}B$, and mitogen-activated protein kinases (MAPK) signaling pathways protein expression were quantified by Western blotting. Results: Our results demonstrated that CK could ameliorate ox-LDL-induced human umbilical vein endothelial cells (HUVECs) inflammation and apoptosis, $NF-{\kappa}B$ nuclear translocation, and the phosphorylation of p38 and c-Jun N-terminal kinase (JNK). Moreover, anisomycin, an activator of p38 and JNK, significantly abolished the anti-apoptotic effects of CK. Conclusion: These results demonstrate that CK prevents ox-LDL-induced HUVECs inflammation and apoptosis through inhibiting the $NF-{\kappa}B$, p38, and JNK MAPK signaling pathways. Thus, CK is a candidate drug for atherosclerosis treatment.

Multicomponent assessment and ginsenoside conversions of Panax quinquefolium L. roots before and after steaming by HPLC-MSn

  • Huang, Xin;Liu, Yan;Zhang, Yong;Li, Shuai-Ping;Yue, Hao;Chen, Chang-Bao;Liu, Shu-Ying
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.27-37
    • /
    • 2019
  • Background: The structural conversions in ginsenosides induced by steaming or heating or acidic condition could improve red ginseng bioactivities significantly. In this paper, the chemical transformations of red American ginseng from fresh Panax quinquefolium L. under steaming were investigated, and the possible mechanisms were discussed. Methods: A method with reversed-phase high-performance liquid chromatography coupled with linear ion trap mass spectrometry ($HPLC-MS^n$)-equipped electrospray ionization ion source was developed for structural analysis and quantitation of ginsenosides in dried and red American ginseng. Results: In total, 59 ginsenosides of protopanaxadiol, protopanaxatriol, oleanane, and ocotillol types were identified in American ginseng before and after steaming process by matching the molecular weight and/or comparing $MS^n$ fragmentation with that of standards and/or known published compounds, and some of them were determined to be disappeared or newly generated under different steaming time and temperature. The specific fragments of each aglycone-type ginsenosides were determined as well as aglycone hydrated and dehydrated ones. The mechanisms were deduced as hydrolysis, hydration, dehydration, and isomerization of neutral and acidic ginsenosides. Furthermore, the relative peak areas of detected compounds were calculated based on peak areas ratio. Conclusion: The multicomponent assessment of American ginseng was conducted by $HPLC-MS^n$. The result is expected to provide possibility for holistic evaluation of the processing procedures of red American ginseng and a scientific basis for the usage of American ginseng in prescription.

Deficiency or activation of peroxisome proliferator-activated receptor α reduces the tissue concentrations of endogenously synthesized docosahexaenoic acid in C57BL/6J mice

  • Hsiao, Wen-Ting;Su, Hui-Min;Su, Kuan-Pin;Chen, Szu-Han;Wu, Hai-Ping;You, Yi-Ling;Fu, Ru-Huei;Chao, Pei-Min
    • Nutrition Research and Practice
    • /
    • v.13 no.4
    • /
    • pp.286-294
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Docosahexaenoic acid (DHA), an n-3 long chain polyunsaturated fatty acid (LCPUFA), is acquired by dietary intake or the in vivo conversion of ${\alpha}$-linolenic acid. Many enzymes participating in LCPUFA synthesis are regulated by peroxisome proliferator-activated receptor alpha ($PPAR{\alpha}$). Therefore, it was hypothesized that the tissue accretion of endogenously synthesized DHA could be modified by $PPAR{\alpha}$. MATERIALS/METHODS: The tissue DHA concentrations and mRNA levels of genes participating in DHA biosynthesis were compared among $PPAR{\alpha}$ homozygous (KO), heterozygous (HZ), and wild type (WT) mice (Exp I), and between WT mice treated with clofibrate ($PPAR{\alpha}$ agonist) or those not treated (Exp II). In ExpII, the expression levels of the proteins associated with DHA function in the brain cortex and retina were also measured. An n3-PUFA depleted/replenished regimen was applied to mitigate the confounding effects of maternal DHA. RESULTS: $PPAR{\alpha}$ ablation reduced the hepatic Acox, Fads1, and Fads2 mRNA levels, as well as the DHA concentration in the liver, but not in the brain cortex. In contrast, $PPAR{\alpha}$ activation increased hepatic Acox, Fads1, Fads2, and Elovl5 mRNA levels, but reduced the DHA concentrations in the liver, retina, and phospholipid of brain cortex, and decreased mRNA and protein levels of the brain-derived neurotrophic factor in brain cortex. CONCLUSIONS: LCPUFA enzyme expression was altered by $PPAR{\alpha}$. Either $PPAR{\alpha}$ deficiency or activation-decreased tissue DHA concentration is a stimulus for further studies to determine the functional significance.

A Study on the Evaluation System for Night Lighting Design of Chinese Ancient Building by using AHP Method (AHP 기법을 활용한 중국 고건축물 야간경관 조명디자인의 평가에 관한 연구)

  • He, Shun-Ping;Hong, Kwan-Seon
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.7
    • /
    • pp.291-303
    • /
    • 2019
  • For cities with ancient buildings at core areas, night lighting is an effective means to demonstrate their history and culture. In this regard, night scenes of these ancient buildings are evaluated from multiple aspects, such as color rendition, brightness ratio affected by ambient light and technological realization of lighting facilities. This study builds a visual evaluation system for night scenes of ancient buildings based on three dimensions, namely ancient architecture carrier performance, visual perception and technological realization, and explains specific evaluation sub-criteria one by one. In addition, this study adopts Analytic Hierarchy Process (AHP) to analyze the impact of each sub-criteria item on the weight of the whole evaluation system, and conducts a consistency test to show that the evaluation system meets the reasonable requirements of hierarchy setting. Moreover, relative importance of each sub-criteria item may be determined based on their corresponding weights.

Ginsenoside Rk1 ameliorates paracetamol-induced hepatotoxicity in mice through inhibition of inflammation, oxidative stress, nitrative stress and apoptosis

  • Hu, Jun-Nan;Xu, Xing-Yue;Li, Wei;Wang, Yi-Ming;Liu, Ying;Wang, Zi;Wang, Ying-Ping
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.10-19
    • /
    • 2019
  • Background: Frequent overdose of paracetamol (APAP) has become the major cause of acute liver injury. The present study was designed to evaluate the potential protective effects of ginsenoside Rk1 on APAP-induced hepatotoxicity and investigate the underlying mechanisms for the first time. Methods: Mice were treated with Rk1 (10 mg/kg or 20 mg/kg) by oral gavage once per d for 7 d. On the 7th d, allmice treated with 250mg/kg APAP exhibited severeliverinjury after 24 h, and hepatotoxicitywas assessed. Results: Our results showed that pretreatment with Rk1 significantly decreased the levels of serum alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor, and interleukin-$1{\beta}$ compared with the APAP group. Meanwhile, hepatic antioxidants, including superoxide dismutase and glutathione, were elevated compared with the APAP group. In contrast, a significant decrease in levels of the lipid peroxidation product malondialdehyde was observed in the ginsenoside Rk1-treated group compared with the APAP group. These effects were associated with a significant increase of cytochrome P450 E1 and 4-hydroxynonenal levels in liver tissues. Moreover, ginsenoside Rk1 supplementation suppressed activation of apoptotic pathways by increasing Bcl-2 and decreasing Bax protein expression levels, which was shown using western blotting analysis. Histopathological observation also revealed that ginsenoside Rk1 pretreatment significantly reversed APAP-induced necrosis and inflammatory infiltration in liver tissues. Biological indicators of nitrative stress, such as 3-nitrotyrosine, were also inhibited after pretreatment with Rk1 compared with the APAP group. Conclusion: The results clearly suggest that the underlying molecular mechanisms in the hepatoprotection of ginsenoside Rk1 in APAP-induced hepatotoxicity may be due to its antioxidation, antiapoptosis, anti-inflammation, and antinitrative effects.

A study on the target detection method of the continuous-wave active sonar in reverberation based on beamspace-domain multichannel nonnegative matrix factorization (빔공간 다채널 비음수 행렬 분해에 기초한 잔향에서의 지속파 능동 소나 표적 탐지 기법에 대한 연구)

  • Lee, Seokjin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.489-498
    • /
    • 2018
  • In this paper, a target detection method based on beamspace-domain multichannel nonnegative matrix factorization is studied when an echo of continuous-wave ping is received from a low-Doppler target in reverberant environment. If the receiver of the continuous-wave active sonar moves, the frequency range of the reverberation is broadened due to the Doppler effect, so the low-Doppler target echo is interfered by the reverberation in this case. The developed algorithm analyzes the multichannel spectrogram of the received signal into frequency bases, time bases, and beamformer gains using the beamspace-domain multichannel nonnnegative matrix factorization, then the algorithm estimates the frequency, time, and bearing of target echo by choosing a proper basis. To analyze the performance of the developed algorithm, simulations were performed in various signal-to-reverberation conditions. The results show that the proposed algorithm can estimate the frequency, time, and bearing, but the performance was degraded in the low signal-to-reverberation condition. It is expected that modifying the selection algorithm of the target echo basis can enhance the performance according to the simulation results.