• Title/Summary/Keyword: Pin-type disk

Search Result 112, Processing Time 0.021 seconds

$Al_{2}O_{3}$$TiO_{2}$를 플라즈마 용사한 코팅재의 마모 특성 (Wear Characteristics of $Al_{2}O_{3}\;and\;TiO_{2}$ Coating Materials by Plasma Spray)

  • 김성익;김희곤;김귀식
    • Tribology and Lubricants
    • /
    • 제22권5호
    • /
    • pp.282-289
    • /
    • 2006
  • This paper is to investigate the wear behaviors of two type ceramics, $Al_{2}O_{3}\;and\;TiO_{2}$, by coated plasma thermal spray method under the lubricative environment. The lubricative environments are grease fluids, a general hydraulic fluids, and bearing fluids. The wear testing machine used a pin on disk type. Wear characteristics, which were friction force, friction coefficient and the specific wear rate, according to the lubricative environments were obtained at the four kinds of load and sliding velocity is 0.2 m/sec. After the wear experiments, the wear surfaces of the each test specimen were observed by a scanning electronic microscope.

Fretting Wear and Friction of lnconel 690 for Steam Generator Tube in Elevated Temperature Water

  • Lee, Young-Ze;Lim, Min-Kyu;Oh, Se-Doo
    • KSTLE International Journal
    • /
    • 제3권1호
    • /
    • pp.49-53
    • /
    • 2002
  • Inconel 690 for nuclear steam generator tube has more chromium than the conventionally used Inconel 600 in order to increase the corrosion resistance. TD evaluate the tribological characteristics under fretting condition the fretting tests as well as sliding tests were carried out in elevated temperature water environment. Fretting tests of the cross-cylinder type were done under various vibrating amplitudes and applied normal loads in order to measure the friction forces and wear volumes. Also, the conventional sliding tests of pin-en-disk type were carried out to compare the test results. In fretting, the friction was very sensitive to the load and the amplitude. The friction coefficient decreased with increasing load and decreasing amplitude. Also, the wear of Inconel 690 can be predictable using the work rate model. Depending on normal loads and vibrating amplitudes, distinctively different wear mechanisms and of ten drastically different wear rates can occur. It was fecund that the fretting wear coefficients in water were increased as increasing the temperature of water.

브레이크 라이닝 패드의 마찰 진동 (Friction-Induced Vibration of Brake Lining Pad)

  • 최연선;정성균
    • 한국자동차공학회논문집
    • /
    • 제2권5호
    • /
    • pp.93-100
    • /
    • 1994
  • Friction-induced vibration characteristics of automotive brake lining pad are investigated on the basis of experimental observations from a pin-on-disk type friction-induced vibration experimental apparatus. The measured responses of the experimental apparatus show limit cycles of quasi-harmonics type and beat phenomena due to the velocity dependence of friction force. To deduce the friction coefficient vs. relative velocity Lienard method is adopted with least square fit. It shows Scurve which characterizes a quasi-harmonic vibration. The calculation of amplitudes and friquencies of the limit cycles is done using slowly changing phase and amplitude method. The theoretical and numerical results show fairly good agreements with those of experiments.

  • PDF

이온 플레이팅법으로 제조한 (Ti$_{1-x}$Cr$_{x}$)N 박막의 마모특성에 관한 연구 (Wear properties of (Ti$_{1-x}$Cr$_{x}$)N coatings deposited by ion-plating method)

  • 이광희;박찬홍;이정중
    • 한국표면공학회지
    • /
    • 제34권2호
    • /
    • pp.125-134
    • /
    • 2001
  • ($Ti_{1-x}$ $Cr_{x}$ )N coatings were deposited by an ion-plating method in a reactor with two separate metal sources, Ti and Cr. Ti was evaporated using an electron beam, while Cr evaporation was carried out by resistant heating. The Ti and Cr concentrations in the coatings were controlled by the Ti and Cr evaporation ratio. The coating hardness increased with increasing the Cr content(x) and showed a maximum value of 6,000 HK at around x=0.8. The critical load of the coatings, measured by the scratch test, was around 30 N. The wear resistance properties of the ($Ti_{1-x}$$Cr_{ x}$)N coatings were evaluated using a CSEM pin-on-disk type tribometer. A Cr-steel ball as well as a SiC ball, which had hardness values of 590 HK and 2,600 HK respectively, were used as the pin. After the wear test, the surface morphology, roughness and the concentration of the coatings were investigated, with the main focus being on the effect of wear debris and the transferred layer on the wear behavior.

  • PDF

인공 고관절 골두용 세라믹 복합재료에 대한 세라믹-세라믹 접촉 마멸 특성 분석 (Ceramic-Ceramic Wear Zirconia/Alumina Composites For The Application Of Total Hip Joint Implant)

  • 김환;이권용;김대준;이명현;서원선
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.355-361
    • /
    • 2004
  • Ceramic femoral heads in the total hip replacement have been developed to reduce the polyethylene liner wear, Alumina and zirconia (3Y-TZP) having the excellent tribological properties are coupled against acetabular cups of polyethylene and are used in clinical application worldwide. However, alumina has a risk of catastrophic failure, and zirconia has the low temperature degradation in spite of enhanced fracture toughness. Recently, novel zirconia/alumina composite is very attractive due to the low temperature degradation (LTD)-free character and high fracture toughness. In the present study, we focus on the wear of ceramic on ceramic, which are able to be used as femoral heads and acetabular cups. Therefore, LTD-free zirconia/alumina composites with three compositions are made in a form of disk and cylinder, and the wear of the composites is performed on pin-on-disk type wear tester. The wear is conducted with or without lubricant. All the composites fabricated with the different composition show the good wear resistance.

  • PDF

치과 보철용 금속 합금의 마찰 마멸 특성 (Tribological Characteristics of Dental Metal Alloys)

  • 김종훈;최원식
    • Tribology and Lubricants
    • /
    • 제29권4호
    • /
    • pp.235-241
    • /
    • 2013
  • The tribological characteristics of dental metal alloys and zirconia were studied by carrying out a friction and wear performance test. In this study, a pin-on-disk-type tester was used and dead weight was employed as the normal load applied to the test specimen. The friction coefficient of dental metal alloys was investigated in terms of their weight and sliding velocity. Microscopic observations were carried out on worn surfaces of specimens. The results indicated that among all metal alloys, Super-A had the highest friction coefficient. Super-A had the lowest amount of wear among all metal alloys, and the amount of wear increased in the following order: Crown & Bridge, Porcelain, and Partial. Crown & Bridge had the best friction coefficient, but the hardness of Crown & Bridge was lower than that of Porcelain and Partial. Experimental measurement results indicated that the disk weight before and after the experiment was the same.

미세조직 변화에 따른 AISI 52100 강의 미끄럼마멸 특성 (Sliding Wear Behavior of AISI 52100 Steel with Pearlitic and Bainitic Microstructures)

  • 윤나래;김용석
    • 소성∙가공
    • /
    • 제20권7호
    • /
    • pp.479-484
    • /
    • 2011
  • Dry sliding wear behavior of AISI 52100 steel that has a pearlite or bainite microstructure was characterized to explore the effect of microstructure on the wear of the steel. Isothermal heat treatments were employed to obtain the different microstructures. Pin-on-disk type wear tests of the steel disk were performed at loads of 25~125N in air against an alumina ball. Sliding speed and wear distance used were 0.1m/sec and 300m, respectively. Worn surfaces, wear debris and cross-sections of the worn surfaces were examined with SEM to investigate the wear mechanism of the steel. Hardness of the steel was also evaluated. Wear rate of the steel was correlated with the hardness and the microstructure. On the whole, wear resistance increased with an increase in hardness. However, the pearlite microstructure showed superior wear resistance as compared to the bainite microstructure with a similar hardness. The effect of the microstructure on the wear rate was attributed to the morphological differences of the carbide in the microstructure, which was found to have a significant effect on strain hardening during the wear.

스크롤 컴프레서 팁실의 마찰특성 (Friction Characteristics of the Tip Seal in a Scroll Compressor)

  • 정봉수
    • Tribology and Lubricants
    • /
    • 제30권6호
    • /
    • pp.370-377
    • /
    • 2014
  • The basic elements in a rotary-type scroll compressor are two identical spiral scrolls containing refrigerant gas. The pressure variations in the compression pockets of a scroll compressor change the forces acting on the orbiting scroll, and these forces affect the dynamic behavior of the compression mechanism parts. To achieve high efficiency, using a self-sealing mechanism as a tip seal mechanism is very effective. Tip seals, which are placed on top of the scroll wraps, accomplish thrust sealing. This study calculates the friction force between the tip seal and the side plate of a scroll compressor using the numerical model considered in the Reynolds equation. The calculated friction force is verified by an experiment using a pin-on-disk apparatus. A hydraulic servo valve that controls the pressure of the oil hydraulic cylinder applies the normal load for the test, and a DC servo motor controls the sliding velocity of the disk. The friction force and normal load are measured by the force sensors attached to the supporting parts. The results show that the theoretical and experimental results are similar and that the friction is influenced by the viscosity of the oil and the sliding velocity of the scroll.

평직 탄소섬유의 플라즈마 처리 및 이에 따른 탄소섬유/에폭시 복합재의 마모 특성 (Effect of Plasma Modification of Woven type Carbon Fibers on the Wear Behavior of Carbon Fiber/Epoxy Composites)

  • 이재석;이경엽
    • 한국정밀공학회지
    • /
    • 제27권12호
    • /
    • pp.113-118
    • /
    • 2010
  • For a present study, woven type carbon fibers were surface-modified by oxygen plasma to improve adhesive strength between carbon fibers and epoxy. The change of hydrophilic properties by the plasma modification was investigated through the contact angle measurement and the calculation of surface energy of carbon fiber due to the oxygen plasma modification. FESEM and XPS analyses were performed to study the chemical and physical changes on the surface of carbon fibers due to the oxygen plasma modification. Pin-on-disk wear tests were conducted under dry condition using unmodified and plasma-modified carbon/epoxy composites to investigate the effect of plasma modification on the wear behavior of woven type carbon/epoxy composites. The results showed that the friction coefficient and the wear rate of plasma-modified carbon/epoxy composites were lower than those of unmodified carbon/epoxy composites, respectively. XPS analysis showed that new functional group of a carbonyl type was created on the carbon fibers by the $O_2$ plasma treatment, which enhanced adhesive strength between carbon fibers and epoxy, leading to improve wear properties

$Cr_2O_3$$ZrO_{2}$ 플라즈마 용사한 코팅재의 마모 특성 (Wear Characteristics of $Cr_{2}O_{3}\;and\;ZrO_{2}$Coating Materials by Plasma Spray)

  • 김성익;김희곤;이봉길;김귀식
    • Tribology and Lubricants
    • /
    • 제22권6호
    • /
    • pp.335-341
    • /
    • 2006
  • This paper reports the wear characteristics of two types of coating materials, which are $Cr_2O_3$ and $ZrO_2$, by coated plasma thermal spray method. The wear test was carried out under air, grease, and bearing fluid conditions. The wear testing machine of a pin-on disk type were used to measure friction forces, friction coefficients and the weight losses of the coating specimens on the various sliding velocity and loading condition. The wear surface of specimens were observed by scanning electron microscope (SEM) photographs.