• Title/Summary/Keyword: Pin-on-Disc

Search Result 97, Processing Time 0.026 seconds

Effects of C, Si and RE on Microstructures of DCI using Permanent Mold Casting (금형주조 구상흑연주철의 미세조직에 미치는 C, Si과 RE의 영향)

  • Kim, Sug-Won;Park, Jin-Sung;Khalil, Khalil. A.
    • Journal of Korea Foundry Society
    • /
    • v.26 no.4
    • /
    • pp.174-179
    • /
    • 2006
  • This study aims to investigate the microstructures and mechanical properties of DCI manufactured by sand and metal mold casting. To prohibit the formation of the chill, carbon, silicon and rare earth($0{\sim}0.2\;wt%$) were controlled and temperature of metal mold was constantly kept at $160^{\circ}C$. The sizes, counts and nodularity ratios of nodules were analyzed by image analysis device. Wear test using pin-on-disc wear tester was carried out under the conditions of load 47.2N, velocity 0.4 m/s and distance 2000 m. Tensile test using Instron type testing machine was performed with velocity of 0.1 mm/min according to the KS B 0802. The formation of the chill was not observed when percentage of the carbon and silicon were 3.8 and 2.5. Mechanical properties of GCD manufactured by metal mold were better than sand casting.

Dependence of Sliding Friction Properties on the Angle of Laser Surface Texturing for a Grooved Crosshatch Pattern Under Grease Lubrication (그리스 윤활하에서 레이저 표면 텍스쳐링된 그루브 빗살무늬 패턴의 사잇각에 따른 미끄럼 마찰특성 평가)

  • Kong, Minseon;Chae, Younghun
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.261-266
    • /
    • 2022
  • Notably, laser surface patterning facilitates tribological applications under lubricated sliding contacts. Consequently, a special pattern that can reduce the coefficient of friction under contact is considered necessary for improved machine efficiency. However, inappropriate pattern designs produce higher friction coefficients and cannot reduce friction. In this study, we use cast iron pins as specimens to investigate their friction and wear characteristics. Moreover, we experimentally investigate the correlation between the friction reduction effect and the design of groove crosshatch patterns fabricated with various angles and widths. We conduct a friction test using a pin-on-disc type tribometer under grease lubrication to study the friction reduction effect of the specimens, and we observe that the average coefficient of friction changes with the crosshatch angle and width. The experiment reveals that grooved crosshatch specimens with a crosshatch angle of 135°maximize friction reduction. The coefficient of friction of the groove specimens with a width of 120 ㎛ is lower than that of the specimens with a width of 200?. The friction reduction effect of the width of the groove is attributed to the density of the groove pattern. Thus, grooved crosshatch patterns can be designed to maximize friction reduction, and the friction property of a grooved crosshatch pattern is found to be related to its width and angle.

A Study on the Manufacturing Method of Natural Stretch Yarns using Nylon 66 (Nylon 66를 이용한 Natural Stretch Yarns 제조방법에 관한 연구)

  • Park, Seong-Woo;Seo, Mal-Yong;Hong, Sang-Ki;Choi, Hae-Chung;Choi, Bo-Yun
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.96-96
    • /
    • 2011
  • 본 연구에서는 스포츠 캐주얼 웨어(스노우보드복, 골프복, 등산복 등)로 사용되는 신축성 소재의 개발로 Stretch성을 부여하기 위하여 Nylon 66 POY 소재의 가연가공 기술을 통하여 Mechanical Stretch 성능이 발현되는 소재를 개발하고자 한다. 섬유소재에 일반적으로 신축성을 부여하기 위해서는 Spandex(Polyurethane, PU)를 방적공정에서 복합 제조하는 Core Yarn과 장섬유에 Spandex를 피복하는 Covering Yarn(직물용) 형태가 있는데, Spandex로 인한 신축성은 200~800% 발현되나 PU를 사용함에 따라서 공정추가에 대한 원가상승, 균제도 불량, 몰림현상 및 PU 수축에 의한 중량감이 있으며, 또한 PU에 의한 견뢰도불량, 피복사의 벗겨짐성 등 외관상 트러블 발생빈도가 높다. 이에 따라 Spandex를 사용하지 않고 단일소재로서 사가공기술에 의해 Stretch성이 부여되는 소재를 개발하고 이의 기술을 상용화 하고자 한다. Nylon 66 POY 소재를 Disc 가연기, Pin 가연기 등의 설비를 이용하여 70d급 원사의 가연가공 공정을 진행하였다. 그리고 개발된 원사의 섬도(d), 강도(g/d), 신도(%), 크림프율(%)의 물성 시험을 통하여 Nylon66의 공정상 변화인자에 따른 기본 물성 및 Stretch 발현성을 분석하여 최적의 설비 및 공정조건을 확립하였다.

  • PDF

A Study of Sliding Friction and Wear Properties of Bronze added $Cu_2S$ as Solid Lubricants (고체윤활제 $Cu_2S$첨가 청동의 미끄럼 마찰마모특성 연구)

  • Lee Hanyoung;Kim Taejun;Cho Yongjae
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.60-65
    • /
    • 2004
  • [ $MoS_2S$ ] is a well-known metal sulfide applied as solid lubricants and an additive to prolong the life of sintered bearings under severe conditions. However, the high price of $MoS_2S$ limited its wide application. This study is aimed to investigated the possibility for application to solid lubricants for $Cu_2S$ as a substitute of v. Bronzes added $Cu_2S$ and $MoS_2S$ are produced by powder metallurgy in this study, and then evaluated their friction and wear properties. The sliding wear test using pin-on-disc type machine, was conducted at several sliding speeds for three type test pieces, bronze and bronzes added $Cu_2S/MoS_2$. Addition of $Cu_2S$ to bronze leads to relatively good friction and wear properties, although it is not so good as addition of $MoS_2S$. But the properties of bronze added $Cu_2S/MoS_2$ would be not suitable for the condition under the high sliding speed.

  • PDF

A Study of Sliding Friction and Wear Properties for Bronze added $Cu_2S$ as Solid Lubricants (고체윤활제 $Cu_2S$첨가 소결청동의 미끄럼 마찰마모특성 연구)

  • Lee, Han-Young;Ikenaga, Akira
    • Tribology and Lubricants
    • /
    • v.23 no.2
    • /
    • pp.66-72
    • /
    • 2007
  • [ $MoS_2$ ], is a well-known metal sulfide applied as solid lubricants and an additive to prolong the life of sintered bearings under severe conditions. However, the high price of $MoS_2$ limited its wide application. This study is aimed to investigate the possibility far application to solid lubricants for $Cu_2S$ as a substitute of $MoS_2$. Bronzes added $Cu_2S$ and $MoS_2$, are produced by powder metallurgy in this study, and then evaluated their friction and wear properties., as well as sintered bronze. The sliding wear test using pin-on-disc type machine, was conducted at several sliding speeds for three type test pieces sintered bronzes added $Cu_2S$ and $MoS_2$, and sintered bronze without lubricants. Addition of $Cu_2S$ to bronze leads to relatively good friction properties, although it is not so good as addition of $MoS_2$. However, the wear properies of sintered bronze added $Cu_2S$ are better than that of sintered bronze added $MoS_2$.

PLASMA SOURCE ION IMPLANTATION OF NITROGEN AND CARBON IONS INTO CO-CEMENTED WC

  • Han, Seung-Hee;Lee, Yeon-Hee;Lee, Jung-Hye;Kim, Hai-Dong;Kim, Gon-Ho;Kim, Yeong-Woo;Cho, Jung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.220-220
    • /
    • 1999
  • In plasma source ion implantation, the target is immersed in the plasma and repetitively biased by negative high voltage pulses to implant the extracted ions from plasma into the surface of the target material. In this way, the problems of line-of-sight implantation in ion-beam ion implantation technique can be effectively solved. In addition, the high dose rate and simplicity of the equipment enable the ion implantation a commercially affordable process. In this work, plasma source ion implantation technique was used to improve the wear resistance of Co-cemented WC. which has been extensively used for high speed tools. Nitrogen and carbon ions were implanted using the pulse bias of -602kV, 25 sec and at various implantation conditions. The implanted samples were examined using scanning Auger electron spectroscopy and XPS to investigate the depth distributions of implanted ions and to reveal the chemical state change due to the ion implantation. The implanted ions were found to have penetrated to the depth of 3000$\AA$. The wear resistance of the implanted samples was measured using pin-on-disc wear tester and the wear tracks were examined with alpha-step profilometer.

  • PDF

Wear Properties of Epoxy Matrix Nanocomposites (에폭시 기지 나노복합재료의 마모 특성)

  • Kim, J.D.;Kim, H.J.;Koh, S.W.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.83-88
    • /
    • 2010
  • The wear behavior of epoxy matrix composites filled with nano sized silica particles is discussed in this paper. Especially, the variation of the coefficient of friction and the wear resistance according to the change of apply load and sliding velocity were investigated for these materials. Wear tests of pin-on-disc mode were carried out and the wear test results exhibited as following ; The epoxy matrix composites showed lower coefficient of friction compared to the neat epoxy through the whole sliding distance. As increasing the sliding velocity the epoxy matrix composites indicated lower coefficient of friction, whereas the neat epoxy showed higher coefficient of friction as increasing the sliding velocity. The specific friction work of both materials were increased with apply load. In case of the epoxy matrix composites, the running in periods of friction were reduced as increase in apply load. The epoxy matrix composites were improved the wear resistance by adding the nano silica particles remarkably. It is expected that the load carrying capacity of the epoxy matrix composites will be improved by increase of Pv factor.

Wear Characteristics of Lubricant with Nano-diamond Particles on Al-6061 Aluminum Alloy (나노 다이아몬드 입자를 첨가한 엔진 오일의 알루미늄 6061 합금에 대한 마모 특성)

  • Hwang, Sung-Wan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.16-23
    • /
    • 2021
  • Pin-to-disc wear testing experiments were conducted to investigate the wear characteristics of commercial oil (5W-40) with nano-diamond particles. The upper specimen was a SUJ-2 high-carbon chromium steel ball with a diameter of 4 mm, and the lower specimen was made of the Al-6061 alloy. The applied load was 5 N, and the sliding speed was 0.25 m/s. The wear tests were conducted at a sliding distance of 500 m. The friction coefficients and wear rates of the Al-6061 specimens were tested using commercial oil with different nano-diamond concentrations ranging from 0 to 0.02 wt.%. The addition of nano-diamond particles to commercial oil reduced both the wear rate and coefficient of friction of the Al-6061 alloy. The use of nano-diamond particles as a solid additive in oil lubricants was found to improve the tribological behavior of the Al-6061 alloy. For the Al-6061 alloy, the optimal concentration was found to be 0.005 wt.% in view of the friction coefficient and wear rate. Further investigation is needed to determine the optimal concentration of nano-diamond particles for various loadings, sliding speeds, oil temperatures, and sliding distances.

Mechanical and Microestructural Properties of Titanium Matrix Composites Reinforced by TiN Particles

  • Romero, F.;Amigo, V.;Salvador, M.D.;Martinez, E.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1026-1029
    • /
    • 2006
  • Particulate reinforced titanium composites were produced by PM rout. Differents volumetric percentages of TiN reinforcements were used, 5,10,15 vol%. Samples were uniaxial pressed and vacuum sintered at differents temperatures between $1200-1300^{\circ}C$. Density, porosity, shrinkage, mechanical properties and microstructure were studied. Elastic properties and strength resistance were analysed by flexural strength and tension tests, and after the test, fractured samples were analysed too, obtaining a correlation between the fracture, interparticulated or intraparticulated, and the reinforcement addition.. Hardness and microhardness test were applied too, in order to complete the study about mechanical properties. In order to study wear resistance pin-on-disc test were used. In addition, the temperature influence, the reactivity between matrix and reinforcement, and the microstructures developed were observed by optical and electron microscopy.

  • PDF

Effects of Stoichiometry on Properties of NiAl Intermetallics coated on Carbon Steel through Combustion Synthesis (연소합성 코팅된 NiAl 금속간화합물의 화학양론이 미끄럼 마모특성에 미치는 영향)

  • Lee, Han-Young;Lee, Jae-Sung
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.124-132
    • /
    • 2020
  • The effect of the stoichiometry on the sliding wear properties of NiAl coatings has been investigated. Three different powder mixtures with the compositions of Ni-50at%Al, Ni-54at%Al and Ni-42at%Al were diepressed respectively, and which were subsequently coated on mild steel through combustion synthesis in an induction heating system. Sliding wear behavior of the coatings was examined against an alloyed tool steel using a pin-on-disc type sliding wear test machine. As results, it could be seen that powder mixture(Ni-54at%Al) with displaying Al-rich deviations from the stoichiometry of NiAl(Ni-50at%Al) was promoted the most the synthetic reactivity. The microstructure of the coating layer with the compositions of Ni-54at%Al exhibits the porous NiAl single phase structure. However, the microstructure of the coating layer of the compositions of Ni-42at%Al exhibits the denser multi-phase structure containing several intermediate phases in addition to NiAl. Densification of the coating layer was enhanced by increasing the reacting temperature. On the other hand, the wear properties of the coating layers showed that the wear mode at speeds of around 1 m/s was severe wear, regardless of the stoichiometry and reacting temperature. However, wear properties of coating layer with the compositions of Ni-42at%Al were superior to those of coating layer with the compositions of Ni-54at%Al. This would be attributed by the fact that coating layer with the compositions of Ni-42at%Al develops little void and much intermediate phases with high strength.