• Title/Summary/Keyword: Pin-On-Disc

Search Result 97, Processing Time 0.023 seconds

The Effects of Niobium on Sliding Wear Characteristics of High Speed Steel by Powder Metallurgy (분말고속도공구강의 미끄럼마모특성에 미치는 Nb의 영향)

  • 이한영;배종수;김용진
    • Tribology and Lubricants
    • /
    • v.16 no.3
    • /
    • pp.194-200
    • /
    • 2000
  • In order to evaluate the effect of Nb on wear properties of high speed steel(HSS) by powder metallurgy, niobium-alloyed HSS have been prepared by adding 0%, 1%, 3% and 5%Nb to HSS of 6%W-5%Mo-4 %Cr-5%V-5%Co. Sliding wear tests were conducted at various sliding speed conditions under the constant pressure using a pin-on-disc type machine. The results of this study show that the wear resistance of HSS by powder metallurgy was increased by the addition of Nb within the range of sliding speed used in this experimental study. However, the amount of Nb did not improve the wear resistance. It may be due to the thermal stability of carbide and high temperature properties of the matrix containing Nb comparing to that without Nb.

The Wear Properties of the Precipitation Hardened Al-Pb-Cu Bearing Alloys (석출경화된 Al-Pb-Cu계 베어링 합금의 마모거동)

  • 홍택기;허무영;임대순;안성욱
    • Tribology and Lubricants
    • /
    • v.9 no.2
    • /
    • pp.56-62
    • /
    • 1993
  • Al-Pb-Cu and Al-Si-Pb-Cu bearing alloys were produced by forced-stirring method and water-cooled copper mold casting to investigate the effect of the precipitation hardening on the wear properties. Sliding of produced alloy pin against a steel disc were performed under various applied loads. Lowering the wear rate and material transfer phenomena were explained by the strengthening of $\theta'$ precipitates on AI matrix. The transmission electron microscope observation reveals the role of the precipitates in the alloys with Cu. The movement of dislocations was hindered by precipitates which resulted in the reduction of plastic deformation at the worn surfaces.

Correlation of oxidation, Crosslinking, and Wear of UHMWPE (초고분자량 폴리에틸렌의 산화, 가교, 마멸과의 상관관계)

  • 이권용;김석영;김신윤
    • Tribology and Lubricants
    • /
    • v.16 no.4
    • /
    • pp.241-246
    • /
    • 2000
  • The effect of post-irradiation shelf-aging time on the wear of UHMWPE was investigated, and wear results were correlated with the time-dependent microstructural changes of polyethylene after gamma irradiation sterilization. The levels of oxidation and crosslinking in the shelf-aged acetabular liners were examined by FTIR and hot xylene extraction, respectively, and uni-directional repeat pass sliding wear tests were conducted by using a pin-on-disc wear tester. Gamma irradiation sterilization in the air environment caused an increase of oxidation, crosslinking, and wear resistance. With aging, however, oxidation progressed and decreased the level of crosslinking. This resulted in a decrease of wear resistance of UHMWPE that was accompanied with white bands and brittle cracking.

Physical Properties of Diamond-like Carbon Thin Films Prepared by a Microwave Plasma-Enhanced Chemical Vapor Deposition (마이크로웨이브 화학기상증착법으로 성장된 다이아몬드상 카본박막의 물리적인 특성연구)

  • Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.791-794
    • /
    • 2003
  • DLC thin films were prepared by microwave plasma-enhanced chemical vapor deposition method on silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gas mixture. The negative DC bias ($-450V{\sim}-550V$) was applied to enhance the adhesion between the film and the substrate. The films were characterized by Raman spectrometer. The surface morphology was observed by an atomic force microscope (AFM). And also, the friction coefficients were investigated by AFM in friction force microscope (FFM) mode, which were compared with the pin-on-disc (POD) measurement.

  • PDF

Physical Properties of Diamond-like Carbon Thin Films Prepared by a Microwave Plasma-Enhanced Chemical Vapor Deposition (마이크로웨이브 화학기상증착법으로 성장된 다이아몬드상 카본박막의 물리적인 특성연구)

  • Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.842-845
    • /
    • 2003
  • DLC thin films were prepared by microwave plasma-enhanced chemical vapor deposition method on silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gas mixture. The negative DC bias ($-450V{\sim}-550V$) was applied to enhance the adhesion between the film and the substrate. The films were characterized by Raman spectrometer. The surface morphology was observed by an atomic force microscope (AFM). And also, the friction coefficients were investigated by AFM in friction force microscope (FFM) mode, which were compared with the pin-on-disc (POD) measurement.

  • PDF

Correlation of oxidation, Crosslinking, and Wear of UHMWPE (초고분자량 폴리에틸렌의 산화, 가교, 마멸과의 상관관계)

  • 이권용;이근호
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.296-302
    • /
    • 1999
  • The effect of post-irradiation shelf-aging time on the wear of orthopaedic grade UHMWPE was investigated, and wear results were correlated with the time-dependent microstructural changes of polyethylene after gamma irradiation sterilization. The levels of oxidation and crosslinking in the shelf-aged acetabular liners were examined by FTIR and hot xylene extraction, respectively, and uni-directional repeat pass sliding wear tests were conducted by using a pin-on-disc wear tester. Gamma irradiation sterilization in the air environment caused an increase of oxidation, crosslinking, and wear resistance. With aging, however, oxidation progressed and decreased the level of crosslinking. This resulted in a decrease of wear resistance of UHMWPE that was accompanied with the existence of white bands and brittle cracking.

  • PDF

Friction and Wear of Nano-Sized Silica Filled Epoxy Composites

  • Kim, Jae-Dong;Kim, Yeong-Sik;Kim, Hyung-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.174-179
    • /
    • 2014
  • The wear behavior of epoxy matrix composites filled with nano sized silica particles is discussed in this paper. Especially, the variation of the coefficient of friction and the specific wear rate under the various applied load and sliding velocity were investigated for these materials. Wear tests of pin-on-disc mode were carried out and followed by scanning electron microscope observations. The presence of silica filler in epoxy composites was demonstrated significant influence on the friction and wear behavior of epoxy nanocomposites. With the incorporation of silica filler into the epoxy matrix, reduction of the coefficient of friction and specific wear rate were identified. Wear mechanism was discussed by analyzing the worn surface by scanning electron microscope as well.

A technique for the identification of friction at tool/chip interface during machining

  • Arrazola, P.;Meslin, F.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.319-320
    • /
    • 2002
  • Numerical simulation of chip formation during high speed machining requires knowing the friction at tool/chip interface. This parameter is hardly identified and generally the loadings (temperature, force) during the identification are not similar to those encountered during machining. Thus, Coulomb friction identified with pin-on-disc device is often used to conduct numerical simulation. The used of this technique cannot leads to good numerical results of chip formation compared to the experimental tests especially in the case of low uncut chip thickness. In this contribution, we propose a new method to evaluate the friction at tool/chip interface. In fact several Coulomb friction parameters are identified corresponding to several parts of the cutting tool. Experimental tests have been conducted allowed us to determinate both the level and the distribution of the Coulomb friction. Experimental results are also compared to the results of orthogonal cutting simulation. We show that this technique allows predicting accuracy results of chip formation.

  • PDF

Sliding Wear Properties of Borided Iron and Steel in Fluidized Bed Furnace (유동상열처리로에 의해 BORIDING처리한 철강재료의 미끄럼마모특성연구)

  • Lee, Han-Young;Bae, Seok-Choun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.4
    • /
    • pp.261-270
    • /
    • 1996
  • Boriding is one of the chemical methods to achieve the case hardening of steel as well as nitriding or carburizing. The surface layer of the borided steel shows higher hardness and exhibits better resistance to corrosion or fatigue than the nitrided or carburized steel. The great majority of previous studies were confined to mild steel or some alloy steel. To enlarge the application, ductile cast iron (DCI) as a material for boriding has been tried in this study. Thus, sliding wear test has conducted using a pin-on-disc machine to compare between borided DCI and mild steel in fluidized bed furnace. The results show that the wear resistance of borided DCI is improved. Especially it is more efficient in the case of occurence of the mechanical wear.

  • PDF

Wear properties of Al-Pb alloys produced by a forced stirring method (강제교반법으로 제조된 Al-Pb계 베어링 합금의 마모특성)

  • 임화영;허무영;임대순
    • Tribology and Lubricants
    • /
    • v.8 no.1
    • /
    • pp.70-77
    • /
    • 1992
  • Al-Pb-Si bearing alloys were produced by a forced stirring method and a rapid solidification process to study wear properties of bearing alloys. A homogeneous distribution of Pb particles in Al matrix could be obtained by means of the forced stirring and the rapid cooling during the casting. The wear properties of bearing alloys were tested by a pin-on-disc wear tester. The change in microstructure according to the alloy manufacturing variables was observed by the backscattered electron images. Al-Pb and Al-Si binary alloys showed a transition from mild to severe wear. The transition was not found in Al-Pb-Si ternary alloys. It could be concluded that the lubricatioin effect of Pb and the strengthening effect of Si in the ternary alloys enhanced the bearing properties. A Al-25%Pb-13%Si alloy showed the lowest coefficient of friction in this experiment. It indicated that the optimum concentration of alloy was 25% Pb and 13% Si when the forced stirring of melt and water-cooled-copper-mold solidification were adopted.