• 제목/요약/키워드: Pima Indian

검색결과 4건 처리시간 0.016초

기운 일반화 t 분포를 이용한 이진 데이터 회귀 분석 (Binary regression model using skewed generalized t distributions)

  • 김미정
    • 응용통계연구
    • /
    • 제30권5호
    • /
    • pp.775-791
    • /
    • 2017
  • 이진 데이터는 일상 생활에서 자주 접할 수 있는 데이터이다. 이진 데이터를 회귀 분석하는 방법으로 로지스틱(Logistic), 프로빗(Probit), Cauchit, Complementary log-log 모형이 주로 쓰이는데, 이 방법 이외에도 Liu(2004)가 제시한 t 분포를 이용한 로빗(Robit) 모형, Kim 등 (2008)에서 제시한 일반화 t-link 모형을 이용한 방법 등이 있다. 유연한 분포를 이용하면 유연한 회귀 모형이 가능해지는 점에 착안하여, 이 논문에서는 Theodossiou(1998)에서 제시된 기운 일반화 t 분포 (Skewed Generalized t Distribution)의 이용하여 우도 함수를 최대로 하는 이진 데이터 회귀 모형을 소개한다. 기운 일반화 t 분포를 R glm 함수, R sgt 패키지를 연결하여 이 논문에서 제시한 방법을 R로 분석할 수 있는 방법을 소개하고, 피마 인디언(Pima Indian) 데이터를 분석한다.

Independence test of a continuous random variable and a discrete random variable

  • Yang, Jinyoung;Kim, Mijeong
    • Communications for Statistical Applications and Methods
    • /
    • 제27권3호
    • /
    • pp.285-299
    • /
    • 2020
  • In many cases, we are interested in identifying independence between variables. For continuous random variables, correlation coefficients are often used to describe the relationship between variables; however, correlation does not imply independence. For finite discrete random variables, we can use the Pearson chi-square test to find independency. For the mixed type of continuous and discrete random variables, we do not have a general type of independent test. In this study, we develop a independence test of a continuous random variable and a discrete random variable without assuming a specific distribution using kernel density estimation. We provide some statistical criteria to test independence under some special settings and apply the proposed independence test to Pima Indian diabetes data. Through simulations, we calculate false positive rates and true positive rates to compare the proposed test and Kolmogorov-Smirnov test.

Ensemble Methods Applied to Classification Problem

  • Kim, ByungJoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제11권1호
    • /
    • pp.47-53
    • /
    • 2019
  • The idea of ensemble learning is to train multiple models, each with the objective to predict or classify a set of results. Most of the errors from a model's learning are from three main factors: variance, noise, and bias. By using ensemble methods, we're able to increase the stability of the final model and reduce the errors mentioned previously. By combining many models, we're able to reduce the variance, even when they are individually not great. In this paper we propose an ensemble model and applied it to classification problem. In iris, Pima indian diabeit and semiconductor fault detection problem, proposed model classifies well compared to traditional single classifier that is logistic regression, SVM and random forest.

Identification of Novel Alternatively Spliced Transcripts of RBMS3 in Skeletal Muscle with Correlations to Insulin Action in vivo

  • Lee, Yong-Ho;Tokraks, Stephen;Nair, Saraswathy;Bogardus, Clifton;Permana, Paska A.
    • 대한의생명과학회지
    • /
    • 제15권4호
    • /
    • pp.301-307
    • /
    • 2009
  • Whole-body insulin resistance results largely from impaired insulin-stimulated glucose disposal in skeletal muscle. Our previous studies using differential display and quantitative real-time RT-PCR have shown that a novel cDNA band (DD23) had a higher level of expression in insulin resistant skeletal muscle and it was correlated with whole-body insulin action, independent of age, sex, and percent body fat. In this study, we cloned and characterized DD23. The DD23 sequence is part of the 3'UTR region of the RNA binding motif, single stranded interacting protein (RBMS3). We have cloned the full length cDNA for RBMS3 and identified two splice variants. These variants named DD23-L and DD23-S have 15 and 14 exons respectively and differ from RBMS3 in the 3'UTR significantly. Northern blot analyses showed that an ~8.8 kb mRNA transcript of DD23 was predominantly expressed in skeletal muscle and to a lesser extent in placenta, but not in heart, brain, lung, liver, or kidney, unlike RBMS3. Elevated expression levels of these novel alternatively spliced variants of RBMS3 in skeletal muscle may play a role in whole body insulin resistance.

  • PDF