• Title/Summary/Keyword: Pilot scale system

Search Result 358, Processing Time 0.022 seconds

Characterization of Bacterial Community Dynamics during the Decomposition of Pig Carcasses in Simulated Soil Burial and Composting Systems

  • Ki, Bo-Min;Kim, Yu Mi;Jeon, Jun Min;Ryu, Hee Wook;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2199-2210
    • /
    • 2017
  • Soil burial is the most widely used disposal method for infected pig carcasses, but composting has gained attention as an alternative disposal method because pig carcasses can be decomposed rapidly and safely by composting. To understand the pig carcass decomposition process in soil burial and by composting, pilot-scale test systems that simulated soil burial and composting were designed and constructed in the field. The envelope material samples were collected using special sampling devices without disturbance, and bacterial community dynamics were analyzed by high-throughput pyrosequencing for 340 days. Based on the odor gas intensity profiles, it was estimated that the active and advanced decay stages were reached earlier by composting than by soil burial. The dominant bacterial communities in the soil were aerobic and/or facultatively anaerobic gram-negative bacteria such as Pseudomonas, Gelidibacter, Mucilaginibacter, and Brevundimonas. However, the dominant bacteria in the composting system were anaerobic, thermophilic, endospore-forming, and/or halophilic gram-positive bacteria such as Pelotomaculum, Lentibacillus, Clostridium, and Caldicoprobacter. Different dominant bacteria played important roles in the decomposition of pig carcasses in the soil and compost. This study provides useful comparative date for the degradation of pig carcasses in the soil burial and composting systems.

Study of electrical and optical characteristics of ITO films grown on PET substrate by pilot scale roll to roll sputtering system

  • Kim, Cheol-Hwan;Kim, Seong-Hyeon;Lee, Sang-Jin;Lee, Jae-Heung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.181.1-181.1
    • /
    • 2016
  • 플렉서블 디스플레이 및 태양전지가 지향하고 있는 저가, 고속의 대량 생산을 위해서는 필름을 기반으로 하는 연속 공정에 의한 대량의 ITO 박막의 증착이 필수적이다. 이로 인해 롤투롤(roll-to-roll) 스퍼터링법을 이용한 ITO 박막의 연속 증착 공정이 차세대 플렉서블 디스플레이 및 태양전지의 대량 생산을 위한 해결책으로 각광받고 있다. 그러나 대부분의 폴리머 필름의 경우 증착 시 발생되는 열 또는 플라즈마에 의해 방출되는 수분과 유기 솔벤트 같은 오염 물질들에 의한 ITO 박막의 특성 저하와, 낮은 열적 안정성을 가지는 기판 특성상 고온(>$200^{\circ}C$)에서 증착이나 후 열처리를 할 수가 없기 때문에, 낮은 저항과 높은 광투과도 특성을 가지는 ITO 필름을 제작하기 위한 공정 최적화가 필요하다. 따라서, 본 연구에서는 롤투롤 스터링법으로 PET 필름 위에 Sn함량이 각각 3, 5, 7.5 10% 도핑된 ITO 타겟을 사용하여 ITO 박막을 증착 하였고, 전기적 광학적 특성을 조사하여 롤투롤 스퍼터링법으로 우수한 전기 전도도와 광투과도 특성을 가지는 ITO/PET 필름의 증착 조건을 최적화 하였다. 또한, ITO 증착 시 필름에서 발생하는 수분에 의한 ITO 박막의 특성 저하 현상에 대하여 조사하였다.

  • PDF

Characterization of Fine Dust Collection Using a Filter Ventilation (환기장치와 필터를 활용한 미세먼지 제거특성 조사)

  • Jeon, Tae-Yeong;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.229-233
    • /
    • 2015
  • In this study, we examined the removal characteristics of suspended particulate matters which are one of carcinogens to cause lung cancer. The fine dust capture by a pilot scale filtration system depends on several important variables such as humidity, initial fine dust injection volume, and flow rate. The average concentration of particulate matters in the test chamber decreased, but the ultimate collection efficiency did not change during the filtration under high humidity, compared to those of using ambient conditions The initial injection amount of fine dust did not influence the particle capturing efficiency. When the flow rate reduced from 0.6 m/s to 0.3 m/s, the dust collection time increased approximately 1.4 times. Among all variables tested, the flow rate showed the most significant effect on the removal efficiency of fine particulate matter.

Prediction on the Stability of Spray-Dried Lactobacillus reuteri KUB-AC5 by Arrhenius Equation for Long-Term Storage

  • KORAKOCH HAMSUPO;SUKYAI PRAKIT;LOISEAU GERARD;NITISINPRASERT SUNEE;MONTET DIDIER;WANCHAITANAWONG PENKHAE
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1178-1182
    • /
    • 2005
  • Survival of thermotolerant Lactobacillus reuteri KUB-AC5 in $20\%$ (w/v) skim milk was found to be $11.3\%$ after spray drying by using a pilot scale spray dryer with inlet temperature at $170^{\circ}C$ and outlet temperature at $85^{\circ}C$. The ability of dried cell to produce antimicrobial activity was not affected by the spray drying. The model system for predicting viability of spray-dried L. reuteri KUB-AC5 during long-term storage was established, based on the Arrhenius equation, and verified by experimental data, because the viability of cells during storage can be correlated with storage temperature. The viability during storage at $30^{\circ}C$ declined more rapidly than that storage at $4^{\circ}C$.

Reuse of Treated Sewage Water from Absorbent Biofilter System as Agricultural Water Resources (농업수자원으로서의 흡수성 Biofilter 처리수 재이용)

  • 권순국;김현욱;권용웅;조영현;박상원;임경래
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.5
    • /
    • pp.151-159
    • /
    • 2003
  • Absorbent Biofilter Systems (ABS), composed of an anaerobic septic tank, a pump chamber and an absorbent biofilter tank, have been found to economically provide rural on-site wastewater treatment. This study was conducted to assess the potential of ABS effluent as an alternative water resource for agricultural and environmental use, with respect to the removal of pathogenic microorganism and their fertilization effect. A pilot scale ABS was used to compare its removal efficiency of pathogens from effluent water. Overall, more than 95 percent of Salmonella and E. coli were removed. This result demonstrates that a significant reduction in the pathogenic microorganism of effluents can occur in ABS, which implies the feasibility for the use of ABS effluent in agriculture and environment, with the provision of a further simple disinfection step, in order to satisfy the WHO guidelines for the microbiological quality in agriculture. In addition, because of the abundant nutritional content of ABS effluent, the substitution effect of fertilizer (N, P and K) in paddy irrigation, i.e. 2/3 for nitrogen, l/3 for phosphorus and 1/5 for potassium would be expected. Based on the experimental data, the ABS effluent could be used as a new alternative water resource for paddy irrigation, as well as for environmental purposes, such as supplying water to ecological parks in rural villages.

A Study on Syngas Co-combustion Characteristics in a Heavy Oil Combustion System with Multi Burners (멀티 버너 중유 연소로에서의 합성 가스 혼합 연소 특성 연구)

  • Yang, Dong-Jin;Choi, Shin-Young;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.43-49
    • /
    • 2010
  • Co-combustion of syngas in an existing boiler can be one of the options for replacing conventional fossil fuel with alternative fuels such as waste and biomass. This study is aimed to investigate effects of syngas cocombustion on combustion characteristics and boiler efficiency. An experimental study was performed for a pilot-scale furnace with 4 oil burners. Tests were conducted with mixture-gas as a co-combustion fuel and heavy oil as a main fuel. The mixture-gas was composed of 15% CO, 7% $H_2$, 3% $CH_4$ and 75% $N_2$ for simulating syngas from air-blown gasification. And LHV of the mixture-gas was 890 kcal/$Nm^3$. Temperature distribution in the furnace and flue gas composition were measured for various heat replacement ratio by the mixture gas. Heat loss through the wall was also carried out through heat & mass balance calculation, in order to obtain informations related to boiler efficiency. Experimental results show that similar temperature distribution and flue gas composition can be obtained for the range of 0~20% heat replacement by syngas. NOx concentration is slightly decreased for higher heat replacement by the syngas because fuel NOx is decreased in the case. Meanwhile, heat loss is a bit decreased for higher heat replacement by the syngas, which implies that boiler efficiency can be a bit decreased when syngas co-combustion is applied to a boiler.

Removal of Nitrogen and Phosphorus from Municipal Wastewater by a Pilot-scale BNR Process (파이롯트 규모의 BNR 공법에 의한 도시하수의 질소 및 인 제거)

  • Kim, Young-Chur
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.589-599
    • /
    • 2007
  • This study was conducted to investigated the removal efficiency of BOD and nutrient for the treatment of low strength municipal wastewater by a biological nutrient removal system. In this experiment, the effect of operating parameter including HRT of 7.0hr, BOD/TN ratios of 2.62~4.08, internal recycle of 50~300%, and return sludge of 50~100%, were studied during winter season. Efficiencies of organic matter and T-P removal and denitrification were not significantly affected by the change of temperature in winter season. However, the specific nitrification rate and nitrification efficiency decreased at low temperature. Besides, denitrification efficiencies increased with increasing BOD/TN ratios. It was also found that the internal recycle and return sludge ratio below 50% is required for the effective denitrification of low strength municipal wastewater. With operating mode 4 of the optimum, the effluent BOD, T-N and T-P concentration were obtained to average 5.8, 14.6, and 0.84 mg/L, respectively. The temperature-activity coefficient (${\theta}$) of specific nitrification rate, specific denitrification rate and specific phosphorus uptake rate were obtained 1.044, 1.017, 1.028, respectively.

Evaluation of a Thermophilic Two-Phase Anaerobic Digestion Coupled with Membrane Process for Garbage Leachate Treatment (음식물 탈리액 처리를 위한 막결합형 고온 2상 혐기성 소화 공정의 평가)

  • Lee, Eun-Young;Jun, Duk-Woo;Lee, Sang-Hwa;Bae, Jae-Ho;Kim, Jeong-Hwan;Kim, Young-O
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.21-27
    • /
    • 2012
  • This study evaluated the performance of a thermophilic two-phase anaerobic digestion (TTPAD) coupled with membrane process treating garbage leachate. The pilot-scale treatment system is consisted of thermophilic acidogenic reactor (TAR) and thermophilic methanogenic reactor (TMR) coupled with an ultrafiltration (UF) membrane unit. The hydraulic retention time of TAR and TMR were 4 and 20 days, respectively. Effluent TCOD and SCOD of the TTPAD were $25\;{\pm}\;6\;and\;12\;{\pm}\;3$ g/L, respectively, and the corresponding TCOD and SCOD removal efficiencies were 77% and 81%, respectively. Propionate was major acids as 75% in the effluent. Scum formation was not observed in TTPAD, which might be resulted from complete lipid degradation. However, TTPAD was appeared to be sensitive to free ammonia toxicity. The UF membrane was operated with constant pressure filtration at average TMP 1.3 atm. Permeate flux had a range of 15-30 $L/m^2/hr$. With UF membrane, TCOD removal increased from 77% to 93%, and this SS free effluent would be beneficial to subsequent processes such as ammonia stripping.

Effect of Vibration on Grout Permeation Characteristics (진동주입이 그라우트재의 침투 특성에 미치는 영향 연구)

  • Lee, Mun-Seon;Kim, Jong-Sun;Lee, Sung-Dong;Choi, Young-Joon;Yang, Jae-Man;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.267-278
    • /
    • 2010
  • To improve the grout penetration characteristics, vibration method was adopted in this study. The grout material perturbed by cyclic vibration is injected into the ground. By applying the vibrating flow system, cement particles will become less adhesive and the clogging tendency will be decreased. A series of pilot-scale chamber tests were performed to verify the enhancement of the groutability by applying the vibratory grout injection; assessment on change of the lumped parameter $\theta$ which represents a barometer of clogging phenomenon was made. Moreover, the effect of vibratory grout injection through the joint was also investigated using artificially made rock joints. Experimental results as well as analytical results show that the grout penetration depth can be substantially improved by vibration grouting. Moreover, it was found that enhancement of the permeation grouting due to vibratory injection is more dominant at low grouting pressure of less than 400kPa.

  • PDF

A Procedure for Robust Evolutionary Operations

  • Kim, Yongyun B.;Byun, Jai-Hyun;Lim, Sang-Gyu
    • International Journal of Quality Innovation
    • /
    • v.1 no.1
    • /
    • pp.89-96
    • /
    • 2000
  • Evolutionary operation (EVOP) is a continuous improvement system which explores a region of process operating conditions by deliberately creating some systematic changes to the process variable levels without jeopardizing the product. It is aimed at securing a satisfactory operating condition in full-scale manufacturing processes, which is generally different from that obtained in laboratory or pilot plant experiments. Information on how to improve the process is generated from a simple experimental design. Traditional EVOP procedures are established on the assumption that the variance of the response variable should be small and stable in the region of the process operation. However, it is often the case that process noises have an influence on the stability of the process. This process instability is due to many factors such as raw materials, ambient temperature, and equipment wear. Therefore, process variables should be optimized continuously not only to meet the target value but also to keep the variance of the response variables as low as possible. We propose a scheme to achieve robust process improvement. As a process performance measure, we adopted the mean square error (MSE) of the replicate response values on a specific operating condition, and used the Kruskal-Wallis test to identify significant differences between the process operating conditions.

  • PDF