• Title/Summary/Keyword: Pilot scale system

Search Result 357, Processing Time 0.027 seconds

Evaluation of Continuously and Intermittently Aerated Hog Manure Compost Stability in a Pilot-scale Bin Composting System (파일럿 규모 빈 퇴비화 시스템에서 연속 및 간헐 통기 돈분 퇴비의 안정도 평가)

  • Hong, Ji-Hyung
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.100-108
    • /
    • 1998
  • Compost stability represents the state of microbiological activity and measurements of respiration either through $CO_2$ evolution or $O_2$ uptake should provide the best indication of this state. Hog manure amended with sawdust was composted in a pilot-scale reactor vessels using continuous and intermittent aeration for 3 weeks. In this study we evaluated the $CO_2$ respiration rate effect of aeration method on the reduction of $CO_2$ evolution, and investigated the stability of fresh and finished compost for plant growth. The intermittently aerated composting is a practical proposition for a very stable compost making. The $CO_2$ respiration rate in the fresh and finished compost during intermittently aerated composting was maintained from 0.3 to 1.4 and was good for use in horticulture, while the continuously aerated composting was 7 to 23 and needed more time for compost curing.

  • PDF

Analysis of thermal energy efficiency for hollow fiber membranes in direct contact membrane distillation

  • Park, Youngkyu;Lee, Sangho
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.347-353
    • /
    • 2019
  • Although membrane distillation (MD) has great promise for desalination of saline water sources, it is crucial to improve its thermal efficiency to reduce the operating cost. Accordingly, this study intended to examine the thermal energy efficiency of MD modules in a pilot scale system. Two different modules of hollow fiber membranes were compared in direct contact MD mode. One of them was made of polypropylene with the effective membrane area of $2.6m^2$ and the other was made of polyvinylidene fluoride with the effective membrane area of $7.6m^2$. The influence of operation parameters, including the temperatures of feed and distillate, feed flow rate, and distillate flow rate on the flux, recovery, and performance ratio (PR), was investigated. Results showed that the two MD membranes showed different flux and PR values even under similar conditions. Moreover, both flow rate and temperature difference between feed and distillate significantly affect the PR values. These results suggest that the operating conditions for MD should be determined by considering the module properties.

Pilot scale membrane separation of plating wastewater by nanofiltration and reverse osmosis

  • Jung, Jaehyun;Shin, Bora;Lee, Jae Woo;Park, Ki Young;Won, Seyeon;Cho, Jinwoo
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.239-244
    • /
    • 2019
  • Plating wastewater containing various heavy metals can be produced by several industries. Specifically, we focused on the removal of copper (Cu2+) and nickel (Ni+) ions from the plating wastewater because all these ions are strictly regulated when discharged into watershed in Korea. The application of both nanofiltration (NF) and reverse osmosis (RO) technologies for the treatment of wastewater containing copper and nickel ions to reduce fresh water consumption and environmental degradation was investigated. In this work, the removal of copper (Cu2+) and nickel (Ni+) ions from synthetic water was studied on pilot scale remove by before using two commercial nanofiltration (NF) and reverse osmosis(RO) spiral-wound membrane modules (NE2521-90 and RE2521-FEN by Toray Chemical). The influence of main operating parameters such as feed concentration on the heavy metals rejection and permeate flux of both membranes, was investigated. Synthetic plating wastewater samples containing copper ($Cu^{2+}$) and nickel ($Ni^{2+}$) ions at various concentrations(1, 20, 100, 400 mg/L) were prepared and subjected to treatment by NF and RO in the pilot plant. The results showed that NF, RO process, with 98% and 99% removal for copper and nickel, respectively, could achieve high removal efficiency of the heavy metals.

Changes in Gait Patterns after Physical Therapy in Patients with Non-specific Chronic Low Back Pain: a Pilot Study

  • Song, Seonghyeok;Cho, Namjeong;Kim, Hyun-Joong
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.1
    • /
    • pp.105-112
    • /
    • 2022
  • Objective: Nonspecific low back pain (NS-LBP) causes pain and disability, affecting the neuromuscular system and altering gait patterns. The purpose of this study is to investigate the effect of improvement of low back pain symptoms through physical therapy on foot pressure and spatiotemporal gait parameters. Design: A pilot study. Methods: Participants received manual therapy and supervised therapeutic exercise, which consisted of 12 sessions for 6 weeks. Participants were assessed for pain intensity (a numeric pain rating scale), disability index (oswestry disability index), and spatiotemporal gait parameters before and after intervention. Wilcoxon signed rank test was used to analyze the before-and-after differences in a single group. Results: All seven NS-LBP patients completed the study without dropout. After six weeks of physical therapy, the numeric pain rating scale and oswestry disability index showed significant improvement (Z= -2.388, P=0.017). There was no significant improvement in both static and dynamic conditions in foot pressure (P>0.05). However, in the spatiotemporal gait parameters, there were significant differences in all variables except the right stance phase and left mid stance (P<0.05). Conclusions: In our pilot study, 12 sessions of physical therapy in NS-LBP patients improved gait quilty in spatiotemporal gait parameters. Similarly, it has resulted in clinically positive improvements in pain and disability.

A Pilot-Scale Microfiltration/Ultrafiltration system for Drinking Water Treatment (상수처리를 위한 파일롯 규모의 정밀여과/한외여과 시스템)

  • Kim, Hanseung;Oh, Jeongik;Kim, Chunghwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.770-777
    • /
    • 2004
  • Three pilot-scale membrane systems were operated using lake water as influent in this study. Microfiltration (MF) membrane with pore size of 0.01 m was used in Systen I of which filtration mode was set at constant pressure of $1kgf/cm^2$. Ultrafiltration (UF) membranes with molecular cutoff (MWCO) of 80,000 and 13,000 were used in System II-1 and II-2, respectively. Constant flow mode was applied at the range between 0.7 and $1.5m^3/m^2{\cdot}d$ (average of $1.1m^3/m^2${\cdot}d) for System II-1 and between 0.37 and $1.65m^3/m^2{\cdot}d$ (average of $1.18m^3/m^2{\cdot}d$) for System II-2. In System I, the flux changed from $1m^3/m^2{\cdot}d$ to $0.2m^3/m^2{\cdot}d$ during the operation time of 5 months. System II showed recovery of 94% under the allowable maximum pressure of $3kgf/cm^2$ during the same operation period. From these results, the efficient operation was observed in constant flow mode with respect to filtration time and recovery. Average filtrate turbidity showed 0.0071 NTU in System I and 0.0054 NTU in System II, which implied that high turbidity removal was obtained in both MF and UF systems with no significant difference between MF and UF. From the fact that membrane flux depends largely on membrane type and operation mode, a guideline of optimum design and operation should be suggested for application of membrane systems to full scale water treatment.

Scale-up of Melting Chamber for a Pyrolysis Melting Incinemtion System (폐기물 열분해/용융 소각 시스템의 용융로 Scale-up 연구)

  • Yang, Won;Kim, Bong-Keun;Yu, Tae-U;Jeun, Keum-Ha
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.168-175
    • /
    • 2007
  • Ash melting chamber is one of the key facility of the pyrolysis-melting incineration system, and it should be designed and operated very carefully for avoiding solidification of slag. In this study, an example of numerical and experimental scale-up process of the melting chamber, in which high speed air is injected to the molten slag and generates bubbles, which enhances agitation of the slag and char combustion, is presented. Cold flow test, combustion and melting test in a lab-scale (30 kg/hr) chamber and a pilot scale (200 kg/hr) chamber. Minimum energy for maintaining molten slag is derived, and it was found that the molten slag can be maintained efficiently by concentrating heat into the bubbling slag.

  • PDF

Digital Variable Structure Control for a Hot Water Heating System (온수나방 시스템의 디지틀 가변구조제어)

  • 안병천;장효환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.65-75
    • /
    • 1996
  • A pilot plant, which is simplified the hot water heating control system of a large scale residential building, is used to investigate the effects of control methods and operating conditions on the system performance and to compare control characteristics. Digital variable structure controller(DVSC) and digital PI controller are implemented to control the speed of the circulating pump for the pilot plant using PC. For the DVSC, a control algorithm is suggested, which using a nonlinear sliding surface and a PID sliding surface outside and inside of output error boundary layer, respectively. Smith predictor algorithm is used for the compensation of long dead time. The suggested DVSC yields improved control performance compared with existing DVSC using linear sliding surface only. the system responses with the suggested DVSC shows good responses without overshoot for various operating conditions and robust under external disturbances compared with digital PI controller.

  • PDF

Performance of a Pilot-scale Rice Husk Incinerator

  • Park, Seung J.;Kim, Myoung H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.906-917
    • /
    • 1996
  • This study was conducted to find possible application areas of the by-products generated from the incineration of rice husk. To this end, a pilot-scale rice husk incinerator system was constructed and its performed test was carried. Major findings are summarized as follows. 1. The rice husk incinerator system developed in this study performed satisfactory in terms of thermal efficiencies. At the optimum operating conditions, thermal conversion efficiency and heat exchanger efficiency was 97% ad 60%, respectively, while overall thermal efficiency of the system was 58%. Under all conditions tested, temperatures in the combustion chamber were quite uniform and crystallization of SiO$_2$ in the ash was negligible. 2. NOx and SOx content in the flue gas was well below the legal limit but the CO concentration was around the legal limit. 3. Thermal energy from combustion was successfully recovered by a heat exchanger to provide hot water, ash was found a good supplementary cementing m terial, and the flue gas also was an acceptable $CO_2$ supplier to greenhouses.

  • PDF

A Study on Performance and Reactor Behavior of Chemical Refrigerator (화학식 냉동기의 성능 및 반응기 거동에 관한 연구)

  • Park, Seung-Hoon;Lee, Jong-Ho
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.87-95
    • /
    • 1997
  • A chemical heat pump based on the reversible reactions between metal chlorides and ammonia gas is attractive alternative to compression system and liquid absorption systems in cooling and refrigerating fields. The advantages of chemical heat pump are no regulatory constants due to CFC refrigerants, utilization of gas, industrial waste heat, electricity, fuel oil etc. as heat sources and wide applications to energy storage system, large-scale energy managements for industrial process. The scale-up of chemical heat pump from laboratory prototype to pilot plants necessitates the interpretation of system performance and evaluation of dynamic behavior in the chemical reactor. This study contains the prediction of performance of chemical refrigerator according to operating condition, the dynamic simulations through reactor modelling, which is used for the calculation of reactive medium temperature and the conversion variation with reactor cooling temperature, and the effect survey of block parameters on the power of refrigerator.

  • PDF

Pilot Scale Test of Non-woven Fabric Filter Separation Activated Sludge Process for Practical Application on Domestic Wastewater Reclamation (파일럿 규모의 침지식 부직포 여재 활성슬러지 공정의 시스템 처리 특성에 관한 연구)

  • Lee, Sang-Woo;Choi, Chul-hoi;Park, Young-mi;Seo, Gyu-Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.289-294
    • /
    • 2006
  • A pilot scale non-woven fabric filter separation activated sludge system was investigated for practical application on domestic wastewater reclamation and reuse. The system was operated in A/O (Anaerobic/Oxic) process with submerged filter module in the aerobic compartment. In the test of two types of filter materials ($70g/m^2$ and $35g/m^2$), the initial flux (0.42m/d) could be maintained for about three months by regular air backwashing of $70g/m^2$ filter at 0.3m water head. The removal efficiency of organic matter by the system was BOD 93.3%, CODcr 96.3%, SS 96.7%. The effluent quality was 7.8mg/L, 12mg/L and 5mg/L for BOD, CODcr and SS, respectively. The water quality was enough to meet a standard for domestic reuse without human contact. T-N removal efficiency was 49.9% at internal recycle rate 2Q and C/N ratio 3.3. The removal efficiency of T-P was 50% with average effluent concentration, 2.6mg/L.