• Title/Summary/Keyword: Pilot fuel

Search Result 187, Processing Time 0.019 seconds

The Effect of Multiple Injections on the Stability of Combustion and Emissions Characteristic in a Passenger Car Diesel Engine (승용차 디젤엔진의 연료 다단 분사가 연소 안정 및 배출물 특성에 미치는 영향)

  • Roh, Hyun-Gu;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.76-82
    • /
    • 2007
  • This paper described the effect of the multiple injections on the stability of combustion and emission characteristics in a direct injection diesel engine at various operating conditions. In order to investigate the influence of multiple injections in a diesel engine, the fuel injection timing was varied one main injection and two pilot injections at various conditions. The experimental apparatus consisted of DI diesel engine with four cylinders, EC dynamometer, multi-stage injection control system, and exhaust emissions analyzer. The combustion and emission characteristics were analyzed for the main, pilot-main injection, pilot-pilot-main injection strategies. It is revealed that the combustion pressure was smoothly near the top dead center and the coefficient of variations is reduced due to the effect of pilot injection. Also, $NO_x$ emissions are dramatically decreased with pilot injection because the decrease of rate of heat release. However, the soot is increased at early pilot injection and main injection.

EXPERIMENTAL INVESTIGATION AND COMPARISON OF SPRAY AND COMBUSTION CHARACTERISTICS OF GTL AND DIESEL FUELS

  • Kim, K.S.;Beschieru, V.;Jeong, D.S.;Lee, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.275-281
    • /
    • 2007
  • GTL (Gas To Liquid) has the potential to be used in diesel engines as a clean alternative fuel due to advantages in emission reduction, particularly soot reduction. Since the physical properties of GTL fuel differ from those of diesel fuel to some extent, studying how this difference in characteristics of GTL and diesel fuels affects spray and combustion in diesel engines is important. In this study, visual investigation of sprays and flames from GTL and diesel fuels in a vessel simulating diesel combustion was implemented. The effects of various parameters and conditions, such as injection pressure, chamber temperature and pilot injection on liquid-phase fuel length and auto-ignition delay were investigated. It was determined that GTL has a somewhat shorter liquid-phase fuel length, which explains why there is less contact between the fuel liquid-phase and flame for GTL fuel compared to diesel fuel.

Combustion Characteristics of Waste Sewage Sludge using Oxy-fuel Circulating Fluidized Bed (슬러지 순산소 유동층 연소특성)

  • Jang, Ha-Na;Sung, Jin-Ho;Choi, Hang Seok;Seo, Yong-Chil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.846-853
    • /
    • 2017
  • Cold bed and $30kW_{th}$ pilot bed tests using circulating fluidized bed (CFB) were conducted to apply oxy-fuel technology for waste sludge combustion as a carbon capture and storage technology. In cold bed test, the minimum fluidization velocity ($u_{mf}$) and superficial velocity for fast fluidization was determined as 0.120 m/s and 2.5 m/s, respectively. In the pilot test, air and oxy-fuel combustion experiments for waste sludge were conducted using CFB unit. The flue-gas temperature in 21~25% oxy-fuel combustion was higher than that of air and up to 30% oxy-fuel combustion. In addition, the concentration of carbon dioxide was more than 80% with the oxygen injection range from 21% to 25% in oxy-fuel CFB waste sludge combustion.

Combustion Characteristics of Imported Bituminous & Subbituminous Coal in a Pilot Scale Test Facility (발전용 역청탄 및 아역청탄의 파일롯 연소특성 평가)

  • Kim, Hyunhee;Park, Hoyoung;Lim, Hyunsoo;Baek, Sehyun;Kim, Taehyung;Kim, Youngju;Gong, Jiseon;Lee, Jeongeun
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.207-214
    • /
    • 2014
  • With the depletion of high grade coal, it is indispensable to be used co-combustion of low rank coal with bituminous coal in pulverized coal-fired power plants. This study describes the detailed measurements of combustion characteristics of bituminous and subbituminous coal in a 0.7MWth pilot-scale test facility. This experimental works include the measurement of gas temperature, gas concentrations along with the reactor axial and radial distance at the condition of excess air ratio of 1.2. The solid sampling was carried out and analyzed with the combustion of bituminous coal. The main reaction zone of coal flame in a reactor was formed about 1 m from the swirl burner, and at downstream, the fully developed temperature and species distribution was observed. The sampled particles of bituminous coal in a reactor revealed the complete carbon burn-out was achieved just after an main combustion zone.

Simulation of Natural Gas Injected Dual-Fuel DI 2-Stroke Diesel Engine (천연가스를 파이럿오일과 이원공급하는 직접분사식 2행정 디이젤기관의 시뮬레이션)

  • Choi, In Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.9-18
    • /
    • 1995
  • The substitution of conventional fuel oil by alternative fuels is of immense interest due to liquid oil shortage and requirements of emission control standard. Among the alternative fuels, natural gas may be the most rational fuel, because of its widespread resource and clean est burning. Meanwhile, engine simulation is of great importance in engine development. Hence a zero-dimensional combustion model was developed for dual-fuel system. Natural gas was injected directly into the cylinder and small amount of distillate was used to provide the ignition kernel for natural gas burning. The intake air and exhaust gas flow was modeled by filling and emptying method. Although the single zone approach has an inherent limitation, the model showed promise as a predictive tool for engine performance. Its simulation was also made to see how the engine performance was influenced by the fuel injection timings and amount of each fuel.

  • PDF

Adaptive Neuro-fuzzy-based modeling of exhaust emissions from dual-fuel engine using biodiesel and producer gas

  • Prabhakar Sharma;Avdhesh Kr Sharma
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.175-184
    • /
    • 2022
  • The dual-fuel technology, which uses gaseous fuel as the main fuel and liquid as the pilot fuel, is an appealing technology for reducing the exhaust emissions. The current study proposes emission models based on ANFIS for a dual-fuel using producer gas (PG)-diesel engine. Emissions measurements were taken at different engine load levels and fuel injection timings. The proposed model predictions were examined using statistical methods. With R2 values in the range of 0.9903 to 0.9951, the established ANFIS model was found to be consistently robust in predicting emission characteristics. The mean absolute percentage deviate in range 1.9 to 4.6%, and mean squared error varies in range 0.0018 to 13.9%. The evaluation of the ANFIS model developed shows a reliable claim of intrinsic sensitivity, strength, and outstanding generalization. The presented meta-model can be used to simulate the engine's operation in order to create an efficient control tool.

Process Development of Pyrolysis Liquefaction for Waste Plastics (폐플라스틱의 열분해 유화기술 개발)

  • Nho Nam-Sun;Shin Dae-Hyun;Park Sou-Won;Lee Kyong-Hwan;Kim Kwang-Ho;Jeon Sang-Goo;Cho Bong-Gyu
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.118-125
    • /
    • 2006
  • The target of this work was the process development of demonstration plant to produce the high quality alternative fuel oil by the pyrolysis of mixed plastic waste. In the first step of research, the bench-scale units of 70 t/y and the pilot plant of 360 t/y had been developed. Main research contents in this step were the process performance test of pilot plant of 360 ton/year and the development of demonstration plant of 3,000 t/y, which was constructed at Korea R & D Company in Kimjae City. The process performance of pilot plant of 360 t/y showed about 80% yield of liquid product, which was obtained by both light gas oil(LGO) and heavy gas oil(HGO), The boiling point range distribution of LO product that was mainly consisting of olefin components in PONA group appeared at between that of commercial gasoline and kerosene. On the other hand, HO product was mainly paraffin and olefin components and also appeared at upper temperature distribution range than commercial diesel. Gas product showed a high fraction of $C_3\;and\;C_4$ product like LPG composition, but also a high fraction of $CO_2$ and CO by probably a little leak of process.

  • PDF

Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part II: Numerical Analysis on Isothermal Flow Structure) (마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part II: 비반응 유동구조에 관한 수치해석))

  • Mun, Sun-Yeo;Hwang, Hae-Joo;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.201-202
    • /
    • 2012
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine were numerically investigated. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with constant fuel flow rates for each nozzle. As a result, the variation in location of pilot nozzle resulted in significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus flame stability and emission characteristics might be significantly changed. The swirl angle of $45^{\circ}$ provided similar recirculating flow patterns in a wide range of equivalence ratio (0.5~1.0). Compared to the co-swirl flow, the counter-swirl flow leaded to the reduction in CTRZ and fuel-air mixing near the burner exit and a weak interaction between the pilot partially premixed flame and the lean premixed flame. With the comparison of experimental results, it was confirmed that the case of co-swirl flow and swirl $angle=45^{\circ}$ would provided an optimized combustor performance in terms of flame stability and pollutant emissions.

  • PDF

BTL Pilot Process using Fe-based F-T Catalyst (철계 촉매를 이용한 BTL 파일롯 공정 연구)

  • Chae, Ho-Jeong;Jeong, Soon-Yong;Kim, Chul-Ung;Jeong, Kwang-Eun;Koh, Jae-Cheon;Kim, Tae-Wan;Park, Hyun-Joo;Lee, Sang-Bong;Han, Jeong-Sik;Jeong, Byung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.804-806
    • /
    • 2010
  • Due to the depletion of fossil fuel, high oil price and global warming issue by green house gas such as CO2, clean fuel technologies using biomass, especially BTL (biomass to liquid) technology, have been greatly attracted. This paper has examined F-T catalyst and process which are two backbones of BTL technology. In addition, this paper introduces our BTL pilot plant using Fe based catalyst which has been developed recently in Korea.

  • PDF

Qualification Test of a Main Coolant Pump for SMART Pilot (SMART 연구로 주냉각재펌프의 검증시험)

  • Park, Sang-Jin;Yoon, Eui-Soo;Oh, Hyoung-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.858-865
    • /
    • 2006
  • SMART Pilot is a multipurpose small capacity integral type reactor. Main coolant pump (MCP) of SMART Pilot is a canned-motor-type axial pump to circulate the primary coolant between nuclear fuel and steam generator in the primary system. The reactor is designed to operate under condition of $310^{\circ}C$ and 14.7MPa. Thus MCP has to be tested under same operating condition as reactor design condition to verify its performance and safety. In present wort a test apparatus to simulate real operating situations of the reactor has been designed and constructed to test MCP. And then functional tests, performance tests, and endurance tests have been carried out upon a prototype MCP. Canned motor characteristics, homologous head/torque curves, coast-down curves, NPSH curves and lift-time performance variations were obtained from the qualification test as well as hydraulic performance characteristics of MCP.