• Title/Summary/Keyword: Pilot Scale Test

Search Result 324, Processing Time 0.028 seconds

A Study on the Development and Validation of the Learning Competencies Scale for Engineering College Students: A Case Study K University (공학계열 대학생의 학습역량 측정도구 개발 및 타당화 연구: K대학을 중심으로)

  • Kim, Na-Young;Kang, Donghee
    • Journal of Engineering Education Research
    • /
    • v.25 no.4
    • /
    • pp.21-34
    • /
    • 2022
  • This study is conducted with the aim of identify the factors constituting learning competencies for engineering college students, and developing and validating the scale to measure them. To this end, literature and prior research were reviewed and focus group interview was conducted with high-achieving learners of K University in the capital region of Korea. According to previous research, 3 learning competency groups, 12 learning competencies and 41 sub-competencies were derived. Delphi survey was carried out twice, 28 sub-competencies were derived among the 41 sub-competencies through this process. 166 initial items were developed through literature review and FGI. Then, 130 items were confirmed by verifying content validity in the second Delphi survey. Based on this, pilot test were performed with 110 students in K university, and an interview was conducted with 50 students who participated in the pilot test. Reflecting the pilot test results, 1 sub-competency and 22 items were deleted. After the confirmed pilot test results, the main test were performed with all current students in K University. According to the main test result, the validity of the scale and the model fit was verified for the response data of 823 students, and the scale consisting of a total of 105 items was confirmed. The final learning competencies scale included three competency groups and 10 learning competencies. The scale developed in this study can be used as an independent scale for each competency group as needed. It is expected that this scale can be contributed to support the development their learning competencies for academic success of engineering college students, who are future learners.

Effects of a Bilateral upper Limb Training Program Using a Visual Feedback Method on Individuals with Chronic Stroke: A Pilot Clinical Trial

  • Kang, Dongheon;Park, Jiyoung;Choi, Chisun;Eun, Seon-Deok
    • International Journal of Contents
    • /
    • v.17 no.2
    • /
    • pp.20-31
    • /
    • 2021
  • This study aimed to pilot test a newly developed bilateral upper limb rehabilitation training program for improving the upper limb function of individuals with chronic stroke using a visual feedback method. The double-group pretest-posttest design pilot study included 10 individuals with chronic stroke (age >50 years). The intervention (four weekly meetings) consisted of five upper limb training protocols (wrist extension; forearm supination and pronation; elbow extension and shoulder flexion; weight-bearing shift; and shoulder, elbow, and wrist complex movements). Upper limb movement function recovery was assessed with the FuglMeyer Assessment of the Upper Extremity, the Wolf Motor Function Test, the Trunk Control Test, the modified Ashworth Scale, and the visual analog scale at baseline, immediately after, and four weeks after the intervention. The Fatigue Severity Scale was also employed. The Fugl-Meyer Assessment of the Upper Extremity and Wolf Motor Function Test showed significant improvement in upper limb motor function. The Trunk Control Test results increased slightly, and the modified Ashworth Scale decreased slightly, without statistical significance. The visual analog scale scores showed a significant decrease and the Fatigue Severity Scale scores were moderate or low. The bilateral upper limb training program using the visual feedback method could result in slight upper limb function improvements in individuals with chronic stroke.

Evaluation of Pilot scale Coagulation system Design for CSOs treatment (CSOs 처리를 위한 실증규모 응집침전시스템의 설계평가)

  • Lee, Seung-Chul;Ha, Sung-Ryong
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • A pilot scale coagulation system, which has a function of physicochemical treatment, was developed to treat Combined sewer overflows(CSOs). This coagulation system requires evaluation of optimum design factors whether it has reflected those of lab scale system, moreover, the pilot scale system can be evaluated differently according to the characteristics of influent CSOs even though it has reflected lab scale's design factors. We conducted an experiment using lab scale system that could treat $1m^3$ of CSOs in a day, and also pilot-scale system with $100m^3/day$ CSOs flowed into the Cheongju sewage treatment plant. Therefore the aim of this study is to evaluate a hydraulic similarity between the design factors of pilot scale and those of lab scale coagulation system, and to evaluate feasibility of the coagulation system for the CSOs treatment with optimum operation conditions. From the result of pilot-test, we drew the optimum operation factors of in line mixer and flocculator having similarities with those of lab scale system as well as the optimum coagulant dose. Finally we confirmed that the coagulation system has feasibility to treat the CSOs with high removal efficiency.

Applicable Feasibility of Fenton Oxidation and Zeolite Ion Exchange Processes for Removal of Non-Biodegradable Matters and Ammonia in Livestock Wastewater (축산폐수 중의 난분해성 물질 및 암모니아 제거를 위한 Fenton 산화와 Zeolite 이온교환 공정의 적용 가능성)

  • Cho, Chang-Woo;Kim, Byoung-Young;Chae, Soo-Choen;Chung, Paul-Gene
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.600-606
    • /
    • 2007
  • Livestock wastewater containing concentrated organic matters and nutrients has been known as one of the major pollutants. It is difficult to apply the conventional activated sludge process to treat livestock wastewater because of high Non-biodegradable (NBD) matter and ammonia. The objectives of this study are to remove NBD matters including aromatic compounds and ammonia in livestock wastewater using Coagulation-Fenton oxidation-Zeolite (CFZ) processes and ascertain applicable feasibility in the field through pilot plant experiment. NBD matters and color remained in the treated water were removed over 92% by Fenton oxidation as the second treatment process. Ammonia was removed by over 99.5% in the zeolite ion exchange process as the last treatment method. From $UV_{254}$, $E_2/E_3$ ratio and GC/MS analyses of treated water at each process, the aromatic compound was converted to aliphatic and aromaticity was decreased. In pilot scale test, organics and ammonia removal efficiencies were not much different from the result of lab-scale test at various operation conditions. Furthermore, reaction time and dosage of Fenton reagent in pilot scale experiment reduced by 40 min and 50% rather than in lab-scale test. $BOD_5$, $COD_{Mn}$, SS, T-N and T-P of treated water in the pilot-scale experiment also met the effluent standards.

Development of a Rice Circulating Concurrent-flow Dryer (I) - Performance Test of Pilot Scale Dryer - (순환식 병류형 곡물건조기 개발 (I) -시작기의 성능시험 -)

  • Han J.W.;Keum D.H.;Han J.G.;Kim H.;Hong S.J.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.4 s.117
    • /
    • pp.349-354
    • /
    • 2006
  • This study was performed to evaluate the performances for a concurrent flow rice dryer of pilot scale with devices for circulating rice. The pilot scale dryer with the capacity of 700 kg was developed to obtain design informations for the development of actual scale dryer of holding capacity of 10 tons. Three drying tests were conducted at two temperature levels of $100^{\circ}C\;and\;120^{\circ}C$, and two air flow rates levels of $28.5cmm/m^2\;and\;57.1cmm/m^2$. Drying conditions for Test-1, Test-2 and Test-3 were $100^{\circ}C\;-28.5cmm/m^2,\;120^{\circ}C-28.5cmm/m^2\;and\;120^{\circ}-57.1cmm/m^2}$ respectively. Drying rates were 0.73%(w.b./h) for Test-1, 0.90%(w.b./h) for Test-2 and 1.46%(w.b./h) for Test-3. The crack ratios of brown rice after drying ranged from 2.4% to 8.4%, and increased with the increase of drying rate and airflow rate. The energy consumptions were from 6,225 kJ/kg to 6,993 kJ/kg which was higher than that of conventional cross-flow rice circulating type dryer used in Korea. This results were due to the lower ambient air temperatures of $4.5^{\circ}C\;to\;13.4^{\circ}C$ during drying tests.

Electrostatic Precipitability of the Coal Fly-Ash by the Pilot Scale Test

  • Ahn, Kook-Chan;Kim, Bong-Hwan;Jang, Yang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.602-612
    • /
    • 2001
  • The equation of the particle collection efficiency proposed by Deutsch has been modified through the various experiments to correct the errors caused by the assumptions made for the equation. In order to get an modified Deutsch equation that can be applied to real conditions, a pilot scale electrostatic precipitator is used. The effects of operational variables on the particle collection efficiency are evaluated. Particle resistivity, gas temperature, moisture contents in gas, gas velocity and particle concentration are used as the operational variables. Two different types of coal fly-ash obtained from the fluidized bed combustor and the pulverized coal combustor are used as test particulate to evaluate the effect of the physiochemical and electrical characteristics of the particle on the particle collection efficiency. The experimental results are fitted with the modified Deutsch equation made by Matts-Ohnfeldt and the extended Deutsch equation made by E. C. Potter to evaluate the effect of the particle characteristics and the operation conditions on the particle collection efficiency of the electrostatic precipitator.

  • PDF

Partitioning Tracer Analysis with Temporal Moments Equations (시간 모멘트식을 이용한 상분할추적자의 해석)

  • Cho, Jong-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.3-9
    • /
    • 2011
  • Partitioning tracers have been used with non-partitioning, inert tracer such Br, for detection, estimation, and monitoring of remediation performance of the subsurface contaminated with nonaqueous phase liquids (NAPLs). Various partitioning tracers with different partition coefficients between aqueous and nonaqueous phase liquids can be used to determine the hydraulic conductivity, dispersivity, and residual mass of NAPLs in the subsurface soil matrices. Temporal moment-generating equations were used to analyze the field pilot-scale test results. The pilot-scale tests included conservative tracer tests and partitioning tracer tests. Analyses of nonaqueous phase liquid distribution and characteristics of groundwater bearing soil media were performed.

The Treatment of Volatile Organic Compounds Using a Pilot-Scale Biofilter (Pilot 규모의 바이오필터를 이용한 휘발성유기화합물질 제거)

  • Son, Hyun-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.245-252
    • /
    • 2004
  • Two biofilter tests were conducted under different operating conditions. Test # 1 was performed to treat VOCs generated from a paint booth. The second test was performed to treat VOCs generated from chemical manufacturing processes. The volume of biofilter media was 4.3 $m^3$. For the test # 1, the biofilter was operated for 30 days with 99.9% reduction ratio. Range of temperature of each stage of the biofilter media was measured between $34^{\circ}C$ and $73^{\circ}C$. All the temperatures of stages reduced gradually after the initial dramatic increase. For the test # 2, the biofilter experiment was conducted for 14 days. In this case, the biofilter was installed outdoor and the experiment was performed during wintertime. Therefore, temperature management for the biofilter was needed. Seven-centimeter thick fiberglass insulation and $150^{\circ}C$ steam heating were used to overcome the outside freezing cold weather during test # 2. Temperature of stage # 5 was measured the highest and that of stage # 1 was the lowest. More acclimation time and test period was needed to determine the maximum loading rate.

Effects of Squat Exercise according to Weight Support on Balance and Gait in Patients after Total Hip Replacement: a Pilot Study

  • Kim, So Yeong;Cho, Woon Su;Kim, Byeong Geun
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.3
    • /
    • pp.104-109
    • /
    • 2022
  • Purpose: The purpose of this pilot study is to identify the problems and stability of a study to investigate "Effects of Squat Exercise according to Weight Support on Balance and Gait in Patients after Total Hip Replacement." before proceeding with the study. Methods: Twenty-two rehabilitation patients after THR surgery who met the selection criteria participated. The study subjects were randomly assigned to a squat group using a slider or a squat group using a reformer. The interventions were applied for two weeks. The patients were assessed using Berg balance scale (BBS), Timed up and go test (TUG), and 10-meter walking test (10MW). Results: Although twenty-two study subjects participated in this study, eight study subjects participated dropouts occurred during the study period. There was a significant difference within the group in BBS and TUG in two groups (p<0.05). The difference between the two groups was not significant in all outcome measures (p>0.05). The largest effect size was 1.21 and the smallest effect size was 0.39, all from the BBS. Conclusion: This pilot study suggest that it is feasible with minor adjustment to conduct a larger scale, powered RCT to examine the efficacy of squat exercise according to weight support with patients after THR.

A Study on Pilot Scale Cyclonic-DAF Reactor for Cyanobacteria Removal (남조류 제거를 위한 선회식 가압부상장치 현장 적용에 관한 연구)

  • Oh, Hong-Sok;Kang, Seon-Hong;Nam, Sook-Hyun;Kim, Eu-Ju;Koo, Jae-Wuk;Hwang, Tae-Mun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.5
    • /
    • pp.17-28
    • /
    • 2018
  • Cyclonic-dissolved air flotation(Cyclonic-DAF), an advanced form of pressure flotation, applies a structure that enables the forming of twirling flows. This in turn allows for suspended matter to adhere to microbubbles and float to the surface of a treatment tank during the process of intake water flowing through a float separation tank. This study conducted a lab-scale test and pursued geometrical modeling using computational fluid dynamics(CFD) to establish a pilot scale design. Based on the design parameters found through the above process, a pilot cyclonic-DAF system($10m^3/hr$) for removing algae was created. Upon developing the pilot-scale cyclonic-DAF system, a type of algae coagulant(R-119) was applied as the coagulant to the system for field testing through which the removal rates of chlorophyll-a and cyanobacteria were evaluated. The chlorophyll-a and harmful cyanobacteria of the raw water at region B, the field-test site, were found to be $177.9mg/m^3$ and 652,500cells/mL respectively. Treated waters applied with 60mg/L and 100mg/L of algae coagulant presented removal efficiencies of approximately 95% and 97%, respectively. The cyanobacteria cell number of the treated waters applied with 60mg/L and 100mg/L of algae coagulant both that were equal to or less than 1,000cells/mL and were below attention level criteria for the issuance of algae boundary.