• Title/Summary/Keyword: Pilot Injection

Search Result 170, Processing Time 0.022 seconds

A Study on Combustion and Emission Characteristics of Diesel-DME Blended Fuels Using Pilot Injection in DICI Engine (직접분사식 압축착화엔진에서 Pilot분사에 따른 Diesel-DME 혼합연료의 연소 및 배기특성에 관한 연구)

  • Jeong, Jaehoon;Lim, Ocktaeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.55-64
    • /
    • 2014
  • This work was investigated on pilot injection strategy of blended fuels(Diesel-DME) for combustion and emissions in a single cylinder direct injection compression ignition engine. Diesel and DME were blended by the method of weight ratio. Weight ratios for diesel and DME were 95:05 and 90:10 respectively. dSOI between main and pilot injection timing was varied. A total amount of injected fuels(single injection) was adjusted to obtain the fixed BMEP as 4.2 bar in order to compare with the fuel conditions. Also, the amount of pilot injection fuel was varied by 5%, 10% and 20% of total injection fuel. The engine was equipped with common rail and injection pressure is 700 bar at 1200 rpm. As a result, when mixing ratio increase, indicated thermal efficiency was increased in comparison with DD 100 and CO, THC and smoke were lower than DD 100. The influence of reducing NOx by pilot injection was more effective than DD 100. When pilot injection quantity increase, abrupt increase of NOx was occured at pilot injection quantity of 20%.

A Study on Characteristics of Combustion with Pilot Injection in a Marine Diesel Engine (선박용 디젤 엔진에서 Pilot 분사에 대한 연소 특성 연구)

  • Lee, Byoung-Hwa;Bae, Myung-Jik;Han, Dong-Sik;Jeon, Chung-Hwan;Chang, Young-June;Song, Ju-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3007-3012
    • /
    • 2008
  • Multidimensional simulation has been carried out to be clear the role of initial combustion in a marine diesel engines on reduction of NOx and soot emissions by different pilot injection condition. Pilot injection can shorten the ignition delay, thus it reduces the premixed combustion phase. Since most NOx is formed during premixed combustion, pilot injections is one of reliable strategies to reduce the NOx. The formation of NOx consists of that formed by pilot injection and that formed by main injection. The result explains that 25-3-75 among the pilot injection conditions is effective to reduce the NOx, due to optimal combination pilot injection with main injection. The purpose of this study is to explain the characteristics of combustion with pilot injection of the marine diesel engine on reduction of exhaust emissions by examining the combustion process in a cylinder and to explore the formation mechanism of NOx between pilot injection and main injection.

  • PDF

Effects of Pilot Injection on Low Temperature Diesel Combustion (파일럿 분사가 저온 디젤 연소에 미치는 영향)

  • Han, Sang-Wook;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.141-147
    • /
    • 2012
  • A direct injection diesel engine with large amount of exhaust gas recirculation was used to investigate low temperature diesel combustion. Pilot injection strategy was adopted in low temperature diesel combustion to reduce high carbon monoxide and hydrocarbon emissions. Combustion characteristics and exhaust emissions of low temperature diesel combustion under different pilot injection timings, pilot injection quantities and injection pressures were analyzed. Retarding pilot injection timing, increasing pilot injection quantity and higher injection pressure advanced main combustion timing and increased peak heat release rate of main combustion. As a result of these strategies, carbon monoxide and hydrocarbon emissions were reduced. Soot emission was slightly increased with retarded pilot injection timing while the effect of pilot injection on nitrogen oxides emission was negligible under low combustion temperature condition. Spatial distribution of fuel from the spray targeting visualization was also investigated to provide more insight into the reason for the reduction in carbon monoxide and hydrocarbon emissions.

The Effect of Multiple Injections on the Stability of Combustion and Emissions Characteristic in a Passenger Car Diesel Engine (승용차 디젤엔진의 연료 다단 분사가 연소 안정 및 배출물 특성에 미치는 영향)

  • Roh, Hyun-Gu;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.76-82
    • /
    • 2007
  • This paper described the effect of the multiple injections on the stability of combustion and emission characteristics in a direct injection diesel engine at various operating conditions. In order to investigate the influence of multiple injections in a diesel engine, the fuel injection timing was varied one main injection and two pilot injections at various conditions. The experimental apparatus consisted of DI diesel engine with four cylinders, EC dynamometer, multi-stage injection control system, and exhaust emissions analyzer. The combustion and emission characteristics were analyzed for the main, pilot-main injection, pilot-pilot-main injection strategies. It is revealed that the combustion pressure was smoothly near the top dead center and the coefficient of variations is reduced due to the effect of pilot injection. Also, $NO_x$ emissions are dramatically decreased with pilot injection because the decrease of rate of heat release. However, the soot is increased at early pilot injection and main injection.

Effect of Injection Strategy on the Exhaust Emission and Performance Characteristics of a Light-duty Diesel Engine (승용 디젤 엔진에서 분사 전략이 배출 가스 및 엔진 성능에 미치는 영향에 관한 연구)

  • Roh, Hyun-Gu;Lee, Doo-Jin;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.99-105
    • /
    • 2011
  • This paper described the effect of the multiple injections on the emission characteristics and combustion stability in a common rail diesel engine. In order to investigate the influence of multiple injections in a passenger car diesel engine, the injection strategy was varied with pilot injection, post injection and one main injection at various conditions. Based on the experimental results, the combustion and emissions characteristics were analyzed for the various injection strategies such as main, pilot-main, double-pilot-main, double- pilot-main-post injection strategy. It is revealed that the $NO_X$, HC and CO emissions are reduced by double pilot and post injection at medium load, however, soot emission is increased. Also, in the case of multiple injection, the combustion pressure is increased smoothly near the TDC and the coefficient of variation and fuel consumptions are decreased.

Comparison of Pilot Spray Characteristics of HP Diesel Injectors with Different Driving Method for CRDi System (II) (커먼레일 직접분사(CRDi)용 고압 디젤인젝터의 구동방식별 Pilot Spray 특성비교(II) - 솔레노이드 및 피에조 구동방식 비교분석 -)

  • Lee, Jin-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail direct injection system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors with different electric driving characteristics, including solenoid-driven and piezo-driven type. Namely three common-rail injectors with different electric current wave were investigated in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. As this research results, it was found that pilot injection of common-rail system was effected by rate of injection with different electrical characteristic for injector driving.

Comparison of Pilot Spray Characteristics of HP Diesel Injectors with Different Driving Method for CRDi System (I) (커먼레일 직접분사(CRDi)용 고압 디젤인젝터의 구동방식별 Pilot Spray 특성비교 (I) - 실제 직접분사식 디젤엔진에서의 사전분사 특성 분석 -)

  • Lee, Jin-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail direct injection system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors with different electric driving characteristics, including solenoid-driven and piezo-driven type. Namely three common-rail injectors with different electric current wave were investigated in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. As this research results, it was found that pilot injection of common-rail system was effected by rate of injection with different electrical characteristic for driving the injector.

EFFECTS OF A SPLIT INJECTION ON SPRAY CHARACTERISTICS FOR A COMMON-RAIL TYPE DIESEL INJECTION SYSTEM

  • PARK S. W.;SUH H. K.;LEE C. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.315-322
    • /
    • 2005
  • This work was performed to investigate the effect of a split injection on spray characteristics of fuel sprays injected from a common rail system. In order to analyze the spray behavior and atomization characteristics at various rates of split injections, the injection durations of pilot and main injections were varied in experiments. The injection rate of split injection was measured to study the effect of the pilot injection on the main injection. By using a Nd:YAG laser and an ICCD camera, the development of the injected spray was visualized at various elapsed time from the start of injection. The microscopic characteristics such as SMD and axial velocity were analyzed by using a phase Doppler particle analyzer system. The results indicate that the ambient gas flow generated by the pilot injection affects the behavior of main spray, whereas the effect of pressure variation on the main spray is little. The spray tip penetration of a main spray with pilot injection is longer than that of the single injection by the effect of ambient gas flow. Also the main spray produces larger droplets than the pilot spray due to a small relative velocity between the droplets and ambient gas.

Effect of Injection Parameters on Combustion and Exhaust Emission Characteristics in a Small Common-rail Diesel Engine (분사 조건의 변화가 소형 커먼레일 디젤 엔진의 연소 및 배기 특성에 미치는 영향)

  • Kim, Myung-Yoon;Lee, Doo-Jin;Roh, Hyun-Gu;Lee, Je-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.9-15
    • /
    • 2004
  • The characteristics of combustion and emissions were investigated in a single cylinder DI diesel engine equipped with a common rail injection system. This study presents an experimental study of the effect of engine speed, injection timing, injection pressure and pilot injection timing on the combustion and exhaust emissions. The engine speeds were 1000 and 2000rpm and the corresponding injection pressures were 50 and 100MPa. Experimental results show that NOx emissions decrease with retarded injection timing, while HC and CO emissions increases. Higher injection pressure increases NOx with lower soot emissions. For the case with the pilot injection prior to main injection, the ignition delay is shortened and the premixed combustion ratio decreases. Also NOx and soot emissions are decreased with increase of pilot injection advance.

A Study on the Combustion Characteristic and Soot Distribution of a Common Rail Type D.I.Diesel Visualized Engine with Pilot Injection (파일럿 분사시의 커먼레일식 직분식 가시화 디젤엔진의 연소 및 Soot분포 특성에 관한 연구)

  • 이재용;한용택;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.37-43
    • /
    • 2003
  • The objective of this work is to investigate the effect of swirl, injection pressure and pilot injection on D.I. diesel combustion by using a transparent engine system. The test engine is equipped with common rail injection system to obtain high pressure and to control injection timing and duration. In this study, the combustion analysis and steady flow test were conducted to estimate the heat release rate from in-cylinder pressure. Soot distribution in diffusion flame according to swirl ratio, injection pressure and pilot injection was investigated by using LII technique. As the results, high injection pressure was found to shorten ignition delay as well as enhance peak pressure and heat release rate was greatly affected by injection timing and pilot injection. In addition, the results showed that the period of soot formation corresponded to the diffusion flame.