• Title/Summary/Keyword: Pilot터널

Search Result 60, Processing Time 0.027 seconds

Estimation of the Characteristics of Delayed Failure and Long-term Strength of Granite by Brazilian Disc Test (압열인장시험을 이용한 화강암의 지연파괴특성 및 장기안정성 평가)

  • Jung, Yong-Bok;Cheon, Dae-Sung;Park, Eui-Seob;Park, Chan;Lee, Yun-Su;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.67-80
    • /
    • 2014
  • Long-term stability and delayed failure of granite were evaluated through the laboratory test based on Wilkins method and Brazilian disc test (BDT) which yields tensile strength, mode I fracture toughness and subcritical crack growth parameters. Then, the long-term strength of granite was estimated by using analytical models and long-term stability of compressed air-energy storage (CAES) pilot cavern pressurized up to 5 ~ 6 MPa was evaluated using numerical code, FRACOD with the determined subcritical crack growth parameters. The results of test and analyses showed that the subcritical crack growth index, n was determined as 29.39 and the inner pressure of 5 ~ 6 MPa had an insignificant effect on the long-term stability of pilot cavern. It was also found that the measurement and analysis of acoustic emission events can describe the accumulation of damage due to subcritical crack growth quantitatively. That is, AE monitoring can provide the current status of rock under loading if we make an identical installation condition in the field with that of the laboratory test.

Excavation Support Design and Stability Analysis of Shallow Tunnel in Heavily Fractured Rock Mass (연약 파쇄 지반내 터널의 굴착.보강 설계 및 안정성 분석)

  • Shin, Hee-Soon;Synn, Joong-Ho;Park, Chan;Han, Kong-Chang;Choi, Young-Hak;Choi, Yong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.87-92
    • /
    • 2000
  • In excavation of tunnels especially located in shallow depth, it is not rare to meet geological change in excavation progress worse than expected in the initial design stage. This paper present a case study on the re-design of excavation and support system of a shallow tunnel under construction where it meets the unexpected bad geological condition during excavation. The detailed geological investigation shows that the rock mass is heavily weathered and fractured with RMR value less than 20. Considering this geological condition, the design concept is focused on the reinforcement of the ground preceding the excavation of tunnel. Two design patterns, LW-grouting & forepoling with pilot tunnelling method and the steel pipe reinforced grouting method, are suggested. Numerical analysis by FLAC shows that these two patterns give the tunnel and roof ground stable in excavation process while the original design causes severe failure zone around the tunnel and floor heaving. In point of the mechanical stability and the degree of construction, the steel pipe reinforced grouting technique proved to be good for the reinforcement of heavily fractured rock mass in tunnelling. This assessment and design process would be a guide in the construction of tunnels in heavily weathered and fractured rock mass situation.

  • PDF

Geomechanical Stability Analysis of Potential Site for Domestic Pilot CCS Project (국내 이산화탄소 지중격리저장 실증실험 후보부지의 역학적 안정성 평가 기초해석)

  • Kim, A-Ram;Kim, Hyung-Mok;Kim, Hyun-Woo;Shinn, Young-Jae
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.89-99
    • /
    • 2017
  • For a successful performance of Carbon Capture Sequestration (CCS) projects, appropriate injection conditions should be designed to be optimized for site specific geological conditions. In this study, we built a simple 2-dimensional analysis model, based on the geology of Jang-gi basin which is one of the potential sites of domestic CCS projects. We evaluated the impact of initial stress conditions and injection rate through coupled TOUGH-FLAC simulator. From the preliminary analysis, we constructed risk scenarios with the higher potential of shear slip and performed scenario analysis. Our analysis showed that normal stress regime produced the highest potential of shear slip and stepwise increasing injection rate scenario resulted in much larger pore pressure build up and consequent higher potential of the shear slip, which was evaluated using a mobilized friction coefficient.

Determination of Boil-Off gas Ratio for the Design of Underground LNG Storage System in Rock Cavern (암반동굴식 지하 LNG 저장 시스템 설계를 위한 기화율의 산정)

  • Chung, So-Keul;Lee, Hee-Suk;Jeong, Woo-Cheol;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.56-65
    • /
    • 2007
  • A new underground LNG storage concept in the rock mass has been developed by combining underground cavern construction and new ice-ring harrier technologies with the conventional cryogenic insulation system. Technical feasibility of the storage system has been verified through construction and operation of the pilot storage cavern and a full-scale project is expected to start in the near future. One of the most important issues in the LNG storage system is the operational efficiency of the storage to minimize heat loss during a long period of operation due to the cryogenic heat transfer. This paper presents several important results of heat transfer and coupled hydro-thermal analyses by a finite element code Temp/W and Seep/W. A series of heat transfer analyses for full-scale caverns were performed to determine design parameters such as boil-off gas ratio (BOR), insulation thickness and pillar width. The result of the coupled hydro-mechanical analysis showed that BOR for underground storage system remains at about 0.04 %/day during the early stage of the operation. This value could be even much lower when the discontinuities in the rock masses are taken into consideration.

Simulation of Ice Ring Formation around Cryogenic Underground Storage Cavern using Hydro-Thermal Coupling Method (극저온 지하저장고 주변 ice ring 생성 모델링을 위한 열-수리 해석)

  • Jung Yong-Bok;Park Chan;Chung So-Keul;Jeong Woo-Cheol;Kim Ho-Yeong
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.241-250
    • /
    • 2006
  • Ice ring formation, one of the core techniques in LNG storage in a lined rock cavern, is investigated through hydro-thermal coupled analysis. An ice ring acts as a secondary barrier in case of leakage of cryogenic liquid and as a primary barrier for groundwater intrusion into an LNG cavern. Therefore, the thickness and location of the ice ring are crucial factors for the safe operation of an LNG storage cavern, especially for maintaining the integrity of a primary barrier composed of concrete, PU foam, and steel membrane. Through numerical analyses, the position and thickness of the ice ring are estimated, and the temperature and groundwater level are compared with measured values. The temperature md groundwater level by numerical analyses show good agreement with the field measurements when temperature-dependent properties and phase change are taken into account. The schemes used in this paper can be applied for estimation of ice ring formation in designing a full-scale LNG cavern.

Prototyping-based Design Process Integrated with Digital-Twin: A Fundamental Study (디지털 트윈 개념을 적용한 프로토타이핑 기반 디자인 프로세스: 기초연구)

  • Kim, Jin-Wooung;Kim, Sung-Ah
    • Journal of KIBIM
    • /
    • v.9 no.4
    • /
    • pp.51-61
    • /
    • 2019
  • In the general manufacturing sector, prototyping used to reduce the risks that can arise with new conceptual products. However, in AEC area, it does not mass-produce a building, so the prototype itself becomes a building. Therefore, it is challenging to have prototyping of the same scale as the real thing, and the prototyping process in architecture is very inefficient. The prototyping process in the design stage typically assumes making a scaled model, partial model, or digital model. However, it is difficult for these models to correspond to the actual building and the environment of time and space such as scale, material, environment, load, physical properties and deformation, corrosion, etc., unlike the actual building. When using the digital twin concept in the prototyping process, it is possible to measure performance from the design stage to the operation stage. The digital twin was found by a method for monitoring based on physical twins and real-time linkage in the operation stage. Therefore, if the digital twin concept is applied at the design stage, it is possible to predict performance using not only current performance but also history information using real-time information. In order to apply the digital twin concept to the prototyping design process, we analyze the theoretical considerations and the prototyping design process of the digital twin, analyze the cases and research results where the prototyping design was applied, Provide an applied prototyping design process. The proposed process is tested through a pilot project and analyzed for potential use.

A Brief Review on Uncertainty Analysis for the WIPP PA (EPA 규제에 대한 WIPP 사이트 성능평가의 불확실성 분석에 관한 검토)

  • 이연명;강철형;한경원
    • Tunnel and Underground Space
    • /
    • v.12 no.1
    • /
    • pp.52-69
    • /
    • 2002
  • The WIPP (Waste Isolation Pilot Plant), located 42km east of Carlsbad, New Mexico (NM), in bedded salt 655m below the surface, is a mined repository constructed by the US DOE for the permanent disposal of transuranic (TRU) wastes generated by activities related to defence of the US since 1970. Its historical disposal operation began in March 1999 following receipt of a final permit from the State of NM after a positive certification decision for the WIPP was issued by the EPA in 1998, as the first licensed facility in the US for the deep geologic disposal of radioactive wastes. The CCA (Compliance Certification Application) for the WIPP that the DOE submitted to the EPA in 1966 was supported by an extensive performance assessment (PA) carried out by Sandia National Laboratories (SNL), with so-called 1996 PA. Even though such PA methodologies could be greatly different from the way we consider for HLW disposal in Korea largely due to quite different geologic formations in which repository are likely to be located, a review on lots of works done through the WIPP PA studies could be the most important lessons that we can learn from in view of current situation in Korea where an initial phase of conceptual studies on HLW disposal has been just started. The objective of this art report is an overview of the methodology used in the recent WIPP PA to support the US DOE WIPP CCA and some relevant results completed by SNL.

Magnetic Markers-based Autonomous Navigation System for a Personal Rapid Transit (PRT) Vehicle (PRT 차량을 위한 자기표지 기반 무인 자율주행 시스템)

  • Byun, Yeun-Sub;Um, Ju-Hwan;Jeong, Rag-Gyo;Kim, Baek-Hyun;Kang, Seok-Won
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.297-304
    • /
    • 2015
  • Recently, the demand for a PRT(Personal Rapid Transit) system based on autonomous navigation is increasing. Accordingly, the applicability investigations of the PRT system on rail tracks or roadways have been widely studied. In the case of unmanned vehicle operations without physical guideways on roadways, to monitor the position of the vehicle in real time is very important for stable, robust and reliable guidance of an autonomous vehicle. The Global Positioning System (GPS) has been commercially used for vehicle positioning. However, it cannot be applied in environments as tunnels or interiors of buildings. The PRT navigation system based on magnetic markers reference sensing that can overcome these environmental restrictions and the vehicle dynamics model for its H/W configuration are presented in this study. In addition, the design of a control S/W dedicated for unmanned operation of a PRT vehicle and its prototype implementation for experimental validation on a pilot network were successfully achieved.

A Study on Bond Strength of Cement-Based Filler and Flexural Strength of RC Beam Strengthened with GFRP by Filler Thickness (시멘트계 충진제의 접착 성능 및 보강 두께에 따른 GFRP 보강 RC보의 휨 성능에 대한 연구)

  • Choi, Ha-Jin;Choi, Young-Woong;Park, Jong-Chul;Jung, Si-Young;Choi, Oan-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.144-152
    • /
    • 2010
  • In this study, cement-based filler is used as an adhesive instead of organic adhesive, epoxy because there were problems under wet condition. First, the bond strength of cement-based filler was measured and the result was satisfied with KS F 4716. However, in case of wet condition, bond strength of epoxy adhesive decreased $0.73N/mm^2$ in 7 days and $0.84N/mm^2$ in 14 days from pilot test. This implies that there would be a problem on reinforced concrete structure in wet condition, such as tunnel and sewage box. In the second experiment, the flexural strength of RC beams with GFRP using different thickness of cement-based filler was investigated, and the result was indicated 113%, 66%, 75% increase in 10mm, 20mm, 30mm thickness, respectively. From the result, it was known that 10mm filler thickness produces stable bond performance.

Analysis on the Ore Recovery from Operating the Room & Pillar Hybrid Mining Method in the Korean Limestone Mine (국내 석회석 광산에서 주방식하이브리드 채광법의 채수율 분석)

  • Kwon, Dukjoon;Kim, Jaedong
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.161-171
    • /
    • 2017
  • Demand for high-grade limestone is increasing, but the production in the domestic mines has been limited due to the lack of systematic development plans and efforts to develop mining technology to improve the recovery ratio, transition to high-cost underground mining due to increasing social awareness of environmental protection, and the smallness of the domestic mining industry, etc. In this study in connection with this issue, an analysis on the recovery change by improvement of mining method was executed. 3D modeling technique was used to construct a 3D model. 3D model includes the geological structure, the limestone ore body and the underground pits and tunnels excavated at the Daepyeong District of Daesung MDI Donghae District. By using the 3D model, measured resources, reserves and ore recovery were evaluated from the results of pilot operation of the room and pillar hybrid mining method, which is a variant of room and pillar mining method. These results were compared with those obtained from the conventional mining method. The ore recovery obtained by hybrid mining method was found to be up to 71.6%, showing about 26%p. increase compared with the case of conventional mining method.