• 제목/요약/키워드: Pillars

검색결과 345건 처리시간 0.028초

Stability Analysis on the Crushing Facility Space in Mine Tunnel (갱내 파쇄시설 구축을 위한 갱도 안정성평가)

  • Kim, Jong-Gwan;Yang, Hyung-Sik;Kim, Won-Beom;Jang, Myoung-Hwan;Ha, Tae-Wook
    • Tunnel and Underground Space
    • /
    • 제20권3호
    • /
    • pp.145-152
    • /
    • 2010
  • In this study, a survey of structural geology and discontinuities were carried out on the space in a limestone mine where the construction of crushing facilities is in planning. The stability of the site was analyzed by rock mass classifications and numerical analysis. Through these analyses, it could be known that removal of pillars could make the stability problems in the mine and the supports for pillars must be considered.

Study on the splitting failure of the surrounding rock of underground caverns

  • Li, Xiaojing;Chen, Han-Mei;Sun, Yanbo;Zhou, Rongxin;Wang, Lige
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.499-507
    • /
    • 2018
  • In this paper splitting failure on rock pillars among the underground caverns has been studied. The damaged structure is considered to be thin plates and then the failure mechanism of rock pillars has been studied consequently. The critical load of buckling failure of the rock plate has also been obtained. Furthermore, with a combination of the basic energy dissipation principle, generalized formulas in estimating the number of splitting cracks and in predicting the maximum deflection of thin plate have been proposed. The splitting criterion and the mechanical model proposed in this paper are finally verified with numerical calculations in FLAC 3D.

The Determination of Screen Printing Main Factors for Array of Vacuum Glazing Pillar by using Factorial Design of Experiments (요인 실험계획법을 이용한 진공유리 지지대 배치용 스크린 인쇄 주요공정변수 설정)

  • Kim, Jae Kyung;Jeon, Euy Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • 제12권1호
    • /
    • pp.47-51
    • /
    • 2013
  • The screen printing is a process that is widely used in manufacturing process of various fields such as flexible devices, portable multimedia devices, OLED, and the solar cell. The screen printing method has been studied as a method for forming the high precision micro-pattern, making the low-cost manufacturing process and reducing cost through improvement of productivity. It is applicable to deposit and forming the pillars which are one of the core element for comprising vacuum glazing. In this paper, by using the paste of the glass frit base, the screen printing was performed. We analyzed the effect for the printing process to deposit pillar paste on the screen printing parameters by the factorial experimental design. The polynomial predicting the volume of the printed supporting pillars was drawn by using screen printing.

TCAD Simulation of Silicon Pillar Array Solar Cells

  • Lee, Hoong Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • 제16권1호
    • /
    • pp.65-69
    • /
    • 2017
  • This paper presents a Technology-CAD (TCAD) simulation of the characteristics of crystalline Si pillar array solar cells. The junction depth and the surface concentration of the solar cells were optimized to obtain the targeted sheet resistance of the emitter region. The diffusion model was determined by calibrating the emitter doping profile of the microscale silicon pillars. The dimension parameters determining the pillar shape, such as width, height, and spacing were varied within a simulation window from ${\sim}2{\mu}m$ to $5{\mu}m$. The simulation showed that increasing pillar width (or diameter) and spacing resulted in the decrease of current density due to surface area loss, light trapping loss, and high reflectance. Although increasing pillar height might improve the chances of light trapping, the recombination loss due to the increase in the carrier's transfer length canceled out the positive effect to the photo-generation component of the current. The silicon pillars were experimentally formed by photoresist patterning and electroless etching. The laboratory results of a fabricated Si pillar solar cell showed the efficiency and the fill factor to be close to the simulation results.

  • PDF

Estimation of Ground Vibrations Around a Pillar Due to Blast Loading and the Impact of Flyrocks (발파하중 및 비석의 충격에 의한 광주의 지반진동의 예측 연구)

  • Lee, Sang-Gon;Kang, Choo-Won;Chang, Ho-Min;Ryu, Pog-Hyun;Kim, Jang-Won;Song, Ha-Rim;Kim, Seung-Eun
    • Explosives and Blasting
    • /
    • 제28권1호
    • /
    • pp.1-10
    • /
    • 2010
  • In blasting for lighting, fatigue behaviors of pillars such as destruction and deformation may occur due to blasting vibration and flyrock, which may cause collapses of cavities. This study aims to identify dynamic behavior of pillars to maintain efficient safety of cavities in large drafts. when they collide with flyrocks under blasting for the excavation. For the purpose, we compared ground vibration around pillar when flyrock collided with the pillar and that when explosive blast happened for the excavation. we conducted fragmentation analysis of the flyrock and compared impact vibration obtained from empirical equation with ground vibration obtained from regression analysis of real vibration data. also we compared those with results analyzed from numerical analysis.

Fracture formation and fracture Volume on Vertical Load by Blasting Demolition of Model Reinforced Concrete Pillars (철근 콘크리트 기둥 발파시 수직하중에 따른 파쇄형태 및 파쇄체적)

  • Park Hoon;Song Jung-Un;Kim Seung-Kon
    • Explosives and Blasting
    • /
    • 제23권2호
    • /
    • pp.45-56
    • /
    • 2005
  • In this study, fracture formation and fracture volume by blasting demolition of model reinforced concrete pillars were compared with various vertical load and influence of reinforced steel bar. The more vertical load increased, the more tensile cracks and vertical direction cracks produced. In vertical load of 2.0ton, tensile cracks on vertical direction were predominantly produced. Generally, the more vertical load increased, the more bending deformation of concrete steel bar decreased. As a result, vertical load was influenced fracture formation of concrete and bending deformation of reinforced steel bar. Reinforced steel bar was influenced fracture volume of concrete. According to vertical load and influence of reinforce steel bar by blasting demolition of reinforced concrete pillars, drilling and blasting pattern may be modified.

The Scope and Limits of Law Enforcement at Sea on International Law Violations (해상에서 국제법 위반행위에 대한 법 집행권의 범위와 한계)

  • Kim, Suk Kyoon
    • Strategy21
    • /
    • 통권45호
    • /
    • pp.60-90
    • /
    • 2019
  • The use of the high seas are supported by the two pillars of customary principles --the freedom of navigation and the flag state control on its vessels, which are codified in the UN Convention on the Law of the Sea. There have been attempts to limit and retrain the two pillars as maritime regimes are newly created to address new maritime threats, while coastal stares' control over the seas expand. The pillars have been created over thousands years since human beings took to the sea and have served as a foundation to use the oceans peacefully and orderly. Therefore, any retreat or exception from these principles would undermine the fundamental framework for the use of the oceans and eventually these regimes would be subject to control of maritime powers. In conclusion, new maritime regimes such as the sanction measures on North Korea should be enforced within the framework of international law and comply with the fundamental principles such as innocent passage and the freedom of navigation at the high seas.