• Title/Summary/Keyword: Pile-soil system

Search Result 195, Processing Time 0.021 seconds

Nonlinear numerical analysis of influence of pile inclination on the seismic response of soil-pile-structure system

  • Lina Jaber;Reda Mezeh;Zeinab Zein;Marc Azab;Marwan Sadek
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.437-447
    • /
    • 2023
  • Inclined piles are commonly used in civil engineering constructions where significant lateral resistance is required. Many researchers proved their positive performance on the seismic behavior of the supported structure and the piles themselves. However, most of these numerical studies were done within the framework of linear elastic or elastoplastic soil behavior, neglecting therefore the soil non-linearity at low and moderate soil strains which is questionable and could be misleading in dynamic analysis. The main objective of this study is to examine the influence of the pile inclination on the seismic performance of the soil-pile-structure system when both the linear elastic and the nonlinear soil models are employed. Based on the comparative responses, the adequacy of the soil's linear elastic behavior will be therefore evaluated. The analysis is conducted by generating a three-dimensional finite difference model, where a full interaction between the soil, structure, and inclined piles is considered. The numerical survey proved that the pile inclination can have a significant impact on the internal forces generated by seismic activity, specifically on the bending moment and shear forces. The main disadvantages of using inclined piles in this system are the bending forces at the head and pile-to-head connection. It is crucial to account for soil nonlinearity to accurately assess the seismic response of the soil-pile-structure system.

Effect of raft and pile stiffness on seismic response of soil-piled raft-structure system

  • Saha, Rajib;Dutta, Sekhar C.;Haldar, Sumanta
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.161-189
    • /
    • 2015
  • Soil-pile raft-structure interaction is recognized as a significant phenomenon which influences the seismic behaviour of structures. Soil structure interaction (SSI) has been extensively used to analyze the response of superstructure and piled raft through various modelling and analysis techniques. Major drawback of previous study is that overall interaction among entire soil-pile raft-superstructure system considering highlighting the change in design forces of various components in structure has not been explicitly addressed. A recent study addressed this issue in a broad sense, exhibiting the possibility of increase in pile shear due to SSI. However, in this context, relative stiffness of raft and that of pile with respect to soil and length of pile plays an important role in regulating this effect. In this paper, effect of relative stiffness of piled raft and soil along with other parameters is studied using a simplified model incorporating pile-soil raft and superstructure interaction in very soft, soft and moderately stiff soil. It is observed that pile head shear may significantly increase if the relative stiffness of raft and pile increases and furthermore stiffer pile group has a stronger effect. Outcome of this study may provide insight towards the rational seismic design of piles.

Dynamic impedance of a floating pile embedded in poro-visco-elastic soils subjected to vertical harmonic loads

  • Cui, Chunyi;Zhang, Shiping;Chapman, David;Meng, Kun
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.793-803
    • /
    • 2018
  • Based on the theory of porous media, an interaction system of a floating pile and a saturated soil in cylindrical coordinates subjected to vertical harmonic load is presented in this paper. The surrounding soil is separated into two distinct layers. The upper soil layer above the level of pile base is described as a saturated viscoelastic medium and the lower soil layer is idealized as equivalent spring-dashpot elements with complex stiffness. Considering the cylindrically symmetry and the pile-soil compatibility condition of the interaction system, a frequency-domain analytical solution for dynamic impedance of the floating pile embedded in saturated viscoelastic soil is also derived, and reduced to verify it with existing solutions. An extensive parametric analysis has been conducted to reveal the effects of the impedance of the lower soil base, the interaction coefficient and the damping coefficient of the saturated viscoelastic soil layer on the vertical vibration of the pile-soil interaction system. It is shown that the vertical dynamic impedance of the floating pile significantly depends on the real stiffness of the impedance of the lower soil base, but is less sensitive to its dynamic damping variation; the behavior of the pile in poro-visco-elastic soils is totally different with that in single-phase elastic soils due to the existence of pore liquid; the effect of the interaction coefficient of solid and liquid on the pile-soil system is limited.

Analysis of Pile Groups Considering Pile-Cap Interaction (말뚝-캡 강성을 고려한 군말뚝기초의 해석)

  • 정상섬;원진오;허정원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.363-370
    • /
    • 2001
  • A computationally efficient algorithm to analyze a group pile behavior is proposed by consideration of both soil-pile and pile-cap interactions. Using toad transfer method the nonlinear characteristics of the soil-pile interaction for a single pile is modeled by piecewise linear soil springs (p-y, t-z, and q-z curves). Beam-column method, one of the most practical approaches, is used for numerical modeling of the soil-pile system. In addition to the group effect resulting from the soil-pile-soil interaction, for a more realistic analysis it is essential to consider the effect of pile-cap interaction including geometric configuration of the piles in a group and conectivity conditions between piles and the cap. This paper mainly focuses on the pile-cap interaction and the development of a rational numerical procedure of its incorporation with the beam-column method.

  • PDF

Prediction of nonlinear characteristics of soil-pile system under vertical vibration

  • Biswas, Sanjit;Manna, Bappaditya;Choudhary, Shiva S.
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.223-240
    • /
    • 2013
  • In the present study an attempt was made to predict the complex nonlinear parameters of the soil-pile system subjected to the vertical vibration of rotating machines. A three dimensional (3D) finite element (FE) model was developed to predict the nonlinear dynamic response of full-scale pile foundation in a layered soil medium using ABAQUS/CAE. The frequency amplitude responses for different eccentric moments obtained from the FE analysis were compared with the vertical vibration test results of the full-scale single pile. It was found that the predicted resonant frequency and amplitude of pile obtained from 3D FE analysis were within a reasonable range of the vertical vibration test results. The variation of the soil-pile separation lengths were determined using FE analysis for different eccentric moments. The Novak's continuum approach was also used to predict the nonlinear behaviour of soil-pile system. The continuum approach was found to be useful for the prediction of the nonlinear frequency-amplitude response of full-scale pile after introducing the proper boundary zone parameters and soil-pile separation lengths.

Numerical FEM assessment of soil-pile system in liquefiable soil under earthquake loading including soil-pile interaction

  • Ebadi-Jamkhaneh, Mehdi;Homaioon-Ebrahimi, Amir;Kontoni, Denise-Penelope N.;Shokri-Amiri, Maedeh
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.465-479
    • /
    • 2021
  • One of the important causes of building and infrastructure failure, such as bridges on pile foundations, is the placement of the piles in liquefiable soil that can become unstable under seismic loads. Therefore, the overarching aim of this study is to investigate the seismic behavior of a soil-pile system in liquefiable soil using three-dimensional numerical FEM analysis, including soil-pile interaction. Effective parameters on concrete pile response, involving the pile diameter, pile length, soil type, and base acceleration, were considered in the framework of finite element non-linear dynamic analysis. The constitutive model of soil was considered as elasto-plastic kinematic-isotropic hardening. First, the finite element model was verified by comparing the variations on the pile response with the measured data from the centrifuge tests, and there was a strong agreement between the numerical and experimental results. Totally 64 non-linear time-history analyses were conducted, and the responses were investigated in terms of the lateral displacement of the pile, the effect of the base acceleration in the pile behavior, the bending moment distribution in the pile body, and the pore pressure. The numerical analysis results demonstrated that the relationship between the pile lateral displacement and the maximum base acceleration is non-linear. Furthermore, increasing the pile diameter results in an increase in the passive pressure of the soil. Also, piles with small and big diameters are subjected to yielding under bending and shear states, respectively. It is concluded that an effective stress-based ground response analysis should be conducted when there is a liquefaction condition in order to determine the maximum bending moment and shear force generated within the pile.

Prediction of the Natural Frequency of a Soil-Pile-Structure System during an earthquake (지진하중을 받는 말뚝 시스템의 고유 진동수 예측)

  • Yang, Eui-Kyu;Kwon, Seon-Yong;Choi, Jung-In;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.976-984
    • /
    • 2009
  • This study proposes a simple method that uses a simple mass-spring model to predict the natural frequency of a soil-pile-structure system in sandy soil. This model includes a pair of matrixes, i.e., a mass matrix and a stiffness matrix. The mass matrix is comprised of the masses of the pile and superstructure, and the stiffness matrix is comprised of the stiffness of the pile and the spring coefficients between the pile and soil. The key issue in the evaluation of the natural frequency of a soil-pile system is the determination of the spring coefficient between the pile and soil. To determine the reasonable spring coefficient, subgrade reaction modulus, nonlinear p-y curves and elastic modulus of the soil were utilized. The location of the spring was also varied with consideration of the infinite depth of the pile. The natural frequencies calculated by using the mass-spring model were compared with those obtained from 1-g shaking table model pile tests. The comparison showed that the calculated natural frequencies match well with the results of the 1-g shaking table tests within the range of computational error when the three springs, whose coefficients were calculated using Reese's(1974) subgrade reaction modulus and Yang's (2009) dynamic p-y backbone curves, were located above the infinite depth of the pile.

  • PDF

Vertical Vibration Analysis of Single Pile-Soil Interaction System Considering the Interface Spring (접합면 스프링요소를 고려한 단말뚝-지반 상호작용계의 수직진동해석)

  • 김민규;김문겸;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.106-113
    • /
    • 2002
  • In this study, a numerical analysis method for soil-pile interaction in frequency domain problem is presented. The total soil-pile interaction system is divided into two parts so called near field and far field. In the near field, beam elements are used for a pile and plain strain finite elements for soil. In the far field, dynamic fundamental solution for multi-layered half planes based on boundary element formulation is adopted for soil. These two fields are coupled using FE-BE coupling technique In order to verify the proposed soil-pile interaction analysis, the dynamic responses of pile on multi-layered half planes are simulated and the results are compared with the experimental results. Also, the dynamic response analyses of interface spring elements are performed. As a result, less spring stiffness makes the natural frequency decrease and the resonant amplitude increase.

  • PDF

Influence of Pile Cap On The Behaviors of End Bearing Pile Groups (말뚝캡이 선단지지 무리말뚝의 지지거동에 미치는 영향)

  • 최영석;이수형;정충기;김명모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.245-252
    • /
    • 2000
  • Model tests on free standing pile groups and piled footings with varying a pile spacing in two layered soils are carried out. The influence of pile cap on the behaviors of end bearing pile groups is analyzed by comparing the bearing behavior in piled footings with those in a single pile, a shallow footing(cap alone) and free standing pile groups. From the test results, it is found that the bearing characteristics of cap-soil-pile system are related with load levels and pile spacings. Before yield, the bearing resistance by cap is not fully mobilized, however, as the applied load increases, the bearing resistance of cap approaches to that of cap alone and settlement hardening occurs after yield due to the compaction caused by the contact pressure between cap and soil. By the cap-soil-pile interaction, shaft friction and point resistance of piles considerably increase with dependency of pile spacings. In two layered soil, the increasing effect of dilatancy in dense sandy soil adjacent to pile tips, increases the point resistance of pile.

  • PDF

Nonlinear numerical analyses of a pile-soil system under sinusoidal bedrock loadings verifying centrifuge model test results

  • Kim, Yong-Seok;Choi, Jung-In
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.239-255
    • /
    • 2017
  • Various centrifuge model tests on the pile foundations were performed to investigate fundamental characteristics of a pile-soil-foundation system recently, but it is hard to find numerical analysis results of a pile foundation system considering the nonlinear behavior of soil layers due to the dynamic excitations. Numerical analyses for a pile-soil system were carried out to verify the experimental results of centrifuge model tests. Centrifuge model tests were performed at the laboratory applying 1.5 Hz sinusoidal base input motions, and nonlinear numerical analyses were performed utilizing a finite element program of P3DASS in the frequency domain and applying the same input motions with the intensities of 0.05 g~0.38 g. Nonlinear soil properties of soil elements were defined by Ramberg-Osgood soil model for the nonlinear dynamic analyses. Nonlinear numerical analyses with the P3DASS program were helpful to predict the trend of experimental responses of a centrifuge model efficiently, even though there were some difficulties in processing analytical results and to find out unintended deficits in measured experimental data. Also nonlinear soil properties of elements in the system can be estimated adequately using an analytical program to compare them with experimental results.