• Title/Summary/Keyword: Pile-soil interaction

Search Result 211, Processing Time 0.027 seconds

Numerical modelling of a pile-supported embankment using variable inertia piles

  • Dia, Daniel;Grippon, Jerome
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.245-253
    • /
    • 2017
  • The increasing lack of good quality soils allowing the development of roadway, motorway, or railway networks, as well as large scale industrial facilities, necessitates the use of reinforcement techniques. Their aim is the improvement of the global performance of compressible soils, both in terms of settlement reduction and increase of the load bearing capacity. Among the various available techniques, the improvement of soils by incorporating vertical stiff piles appears to be a particularly appropriate solution, since it is easy to implement and does not require any substitution of significant soft soil volumes. The technique consists in driving a group of regularly spaced piles through a soft soil layer down to an underlying competent substratum. The surface load being thus transferred to this substratum by means of those reinforcing piles, which illustrates the case of a piled embankment. The differential settlements at the base of the embankment between the soft soil and the stiff piles lead to an "arching effect" in the embankment due to shearing mechanisms. This effect, which can be accentuated by the use of large pile caps, allows partial load transfer onto the pile, as well as surface settlement reduction, thus ensuring that the surface structure works properly. A technique for producing rigid piles has been developed to achieve in a single operation a rigid circular pile associated with a cone shaped head reversed on the place of a rigid circular pile. This technique has been used with success in a pile-supported road near Bourgoin-Jallieu (France). In this article, a numerical study based on this real case is proposed to highlight the functioning mode of this new technique in the case of industrial slabs.

Reinforcing Effect and Behaviors of Root-Pile in Heavy-Duty Direct Shear Test (대형직접전단시험에 의한 뿌리말뚝의 거동 및 보강효과)

  • Han, Jung-Geun;Jang, Sin-Nam
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.23-30
    • /
    • 2002
  • In recently, using of steel reinforcements by reinforcing materials of the reinforced earth, micro-pile and root-pile etc,. is wide-spreading in the stabilizing control of cutting and embankment slopes, but the failure mechanism of reinforced earth as well as the effect of insert angles or types of reinforcement and others are not defined clearly. In this study, therefore heavy-duty direct shear tests were exercised on the reinforced soil and the non-reinforced soil, which was executed for research on the interaction of soil-reinforcement and theirs behavior. The hardness and softness and the standard sands were used for modeling of reinforced soil, the material constants for the computer simulation were estimated from the results of CD-Test. The effects of reinforcing and of friction increasing on the softness, area ratio of reinforcements is equal, were the better than them of the hardness, as well the reinforcing effects of shear strength without regard to the area ratio is much the same at $10^{\circ}$, insert angle of reinforced bar, differ from them of the existing study. Then, the results of numerical analysis showed that the behavior of reinforcements displayed bending resistance and shear resistance at $15^{\circ}$ and $30^{\circ}$, respectively. Also, the state of strain transfer was observed and the behavior of resistance mechanism on reinforcements presented almost the same them of landslides stabilizing pile.

Evaluation of Dynamic p-y Curve Based on the Numerical Analysis (수치해석기반의 동적 p-y 곡선 산정)

  • Park, Jeong-Sik;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.59-73
    • /
    • 2017
  • Numerical analysis using 3D finite element program (PLAXIS 3D) evaluated the interaction of soil - pile structure under dynamic surface loading. The dynamic p-y curve of the 1-g shaking table experiment by numerical analysis was calculated, and the parametric studies were presented by considering the pile-soil condition, the pile tip condition, and the loading condition. The frequency of 1.4 Hz is almost equal to the natural frequency of the pile - soil system. The p and y values of resonance phenomenon are significantly different from the results of other frequencies. The results can be summarized by a third order polynomial function representing the trend line in the p-y curve. In the case of a single pile, the shape of the dominant curve was found to be an ellipse by mathematical proof. The elliptic equation can be used for the dynamic design or analysis of soil-pile system.

Optimum pile arrangement in piled raft foundation by using simplified settlement analysis and adaptive step-length algorithm

  • Nakanishi, Keiji;Takewaki, Izuru
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.519-540
    • /
    • 2013
  • This paper presents an optimal design method for determining pile lengths of piled raft foundations. The foundation settlement is evaluated by taking into account the raft-pile-soil interaction. The analysis of settlement is simplified by using Steinbrenner's equation. Then the total pile length is minimized under the settlement constraint. An extended sequential linear programming technique combined with an adaptive step-length algorithm of pile lengths is used to solve the optimal design problem. The accuracy of the simplified settlement analysis method and the validity of the obtained optimal solution are investigated through the comparison with the actual measurement result in existing piled raft foundations.

Study on Integrity Assessment of Pile Foundation Based on Seismic Observation Records

  • KASHIWA, Hisatoshi
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.369-376
    • /
    • 2020
  • Given the importance of quickly recovering livelihoods and economic activity after an earthquake, the seismic performance of the pile foundation is becoming more critical than before. In order to promote seismic retrofit of the pile foundations, it is necessary to develop a method for evaluating the seismic performance of the pile foundation based on the experimental data. In this paper, we focus on the building that was suffered severe damage to the pile foundation, conduct simulation analyses of the building, and report the results of evaluating the dynamic characteristics when piles are damaged using a system identification method. As a result, an analysis model that can accurately simulate the behavior of the damaged building during an earthquake was constructed, and it was shown that the system identification method could extract dynamic characteristics that may damage piles.

Winkler Springs (p-y curves) for pile design from stress-strain of soils: FE assessment of scaling coefficients using the Mobilized Strength Design concept

  • Bouzid, Dj. Amar;Bhattacharya, S.;Dash, S.R.
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.379-399
    • /
    • 2013
  • In practice, analysis of laterally loaded piles is carried out using beams on non-linear Winkler springs model (often known as p-y method) due to its simplicity, low computational cost and the ability to model layered soils. In this approach, soil-pile interaction along the depth is characterized by a set of discrete non-linear springs represented by p-y curves where p is the pressure on the soil that causes a relative deformation of y. p-y curves are usually constructed based on semi-empirical correlations. In order to construct API/DNV proposed p-y curve for clay, one needs two values from the monotonic stress-strain test results i.e., undrained strength ($s_u$) and the strain at 50% yield stress (${\varepsilon}_{50}$). This approach may ignore various features for a particular soil which may lead to un-conservative or over-conservative design as not all the data points in the stress-strain relation are used. However, with the increasing ability to simulate soil-structure interaction problems using highly developed computers, the trend has shifted towards a more theoretically sound basis. In this paper, principles of Mobilized Strength Design (MSD) concept is used to construct a continuous p-y curves from experimentally obtained stress-strain relationship of the soil. In the method, the stress-strain graph is scaled by two coefficient $N_C$ (for stress) and $M_C$ (for strain) to obtain the p-y curves. $M_C$ and $N_C$ are derived based on Semi-Analytical Finite Element approach exploiting the axial symmetry where a pile is modelled as a series of embedded discs. An example is considered to show the application of the methodology.

An analysis of horizontal deformation of a pile in soil using a continuum soil model for the prediction of the natural frequency of offshore wind turbines (해상풍력터빈의 고유진동수 예측을 위한 지반에 인입된 파일의 연속체 지반 모델 기반 수평 거동 해석)

  • Ryue, Jungsoo;Baik, Kyungmin;Lee, Jong-Hwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.480-490
    • /
    • 2016
  • As wind turbines become larger and lighter, they are likely to respond sensitively by dynamic loads applied on them. Since the responses at resonances are particularly interested, it is required to be able to predict natural frequencies of wind turbines reliably at early design stage. To achieve this, the foundation-soil analysis is needed to be carried out and a finite element approach is adopted in general. However, the finite element approach would not be appropriate in early design stage because it demands heavy efforts in pile-soil modelling and computing facilities. On the contrary, theoretical approaches adopting linear approximations for soils are relatively simple and easy to handle. Therefore, they would be a useful tool in predicting a pile-soil interaction, particularly in early design stage. In this study an analysis for a pile inserted in soil is performed. The pile and soil are modelled as a beam and continuum medium, respectively, within an elastic range. In this analysis, influence factors at the pile head for lateral loads are predicted by means of this continuum approach for various length-diameter ratios of the pile. The influence factors predicted are validated with those reported in literature, proposed from a finite element analysis.

A Study of Characteristics of Soil-Pile-Structure Interaction Behavior on the Frequency Contents of the Seismic Waves (지진파의 주파수 특성에 따른 지반-말뚝-구조물 상호작용계의 거동 특성 분석)

  • 이종우;이필규;김문겸;김민규
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.295-308
    • /
    • 2004
  • In this study, several Soil-Structure-Interaction (SSI) analyses were performed using the developed FE-BE coupling method and the seismic response behavior of the structure's systems was determined. For the verification of the fundamental solution which is used in this analysis method, a dynamic analysis of the homogeneous ground was performed and it was compared to the results of Estorff et al. In order to verify the seismic response analysis, the results are compared with those of another commercial code. Several kindd of SSI analyses were performed and the seismic response associated with the rile foundation, seismic waves and a consideration of the ground nonlinearity were determined. As a result, it was found that the pile foundations didn't greatly helpful during the seismic event.

Undrained and Drained Behaviors of Laterally-loaded Offshore Piles (배수조건에 따른 측방유동 해상말뚝의 거동특성)

  • Seo, Dong-Hee;Jeong, Sang-Seom;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.149-160
    • /
    • 2008
  • Offshore pile foundations are prone to lateral soil pressures resulting from embankment construction for the reclamation on deepwater soft clay. Since the 1990s, offshore reclamation has actively progressed in Korea, connecting with the development of Songdo newtown, Incheon newport, and Busan newport representatively. Special attention has been given to lateral soil-structure interaction problems related to passively-loaded offshore pile foundations. Based on a plane strain large deformation finite element (LDFE) approach, this paper presents the results of investigation into undrained (short-term) and drained (long-term) behavior of passively-loaded offshore pile foundations. This study examines the effects of major factors, such as soil profile, pile head boundary condition, magnitude of embankment load, and average degree of consolidation. The results allowed quantification of differences in the magnitude of lateral soil pressure acting on the piles between undrained and drained phases.

Evaluation of the Soil-Structure Interaction of a MDOF Column Type Structure on Group Piles Based on the Large Scale 1g Shaking Table Test and the Numerical Analysis (대형 진동대 실험 및 수치해석을 이용한 다자유도 기둥 구조물과 군말뚝 기초의 지반-구조물 상호작용 평가)

  • Chae, Jonghoon;Yoon, Hyungchul;Ahn, Jaehun;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.47-58
    • /
    • 2022
  • Many 1g shaking table tests with an SDOF structure supported by a single pile were performed to evaluate the soil-structure interaction (SSI) effect. Since most structures supported by group piles are MDOF structures with columns, the SSI effect is simulated using a large 1g shaking table test and numerical analysis. According to the results, the movement in the piles tends to increase with input acceleration and when the input frequency is similar to the natural frequency. Furthermore, the slope of the dynamic p-y curve remains constant regardless of the variation of acceleration and input frequency. According to the results of the dynamic p-y backbone curve and the moment of group piles, a center pile with a leading pile has more soil resistance than side piles with a trailing pile, and the effect of group piles is observed above the 7D center to center pile distance.