• Title/Summary/Keyword: Pile-soil dynamic interaction

Search Result 73, Processing Time 0.022 seconds

Dynamic response of pipe pile embedded in layered visco-elastic media with radial inhomogeneity under vertical excitation

  • Cui, Chun Y.;Meng, Kun;Wu, Ya J.;Chapman, David;Liang, Zhi M.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.609-618
    • /
    • 2018
  • A new mechanical model for predicting the vibration of a pipe pile embedded in longitudinally layered visco-elastic media with radial inhomogeneity is proposed by extending Novak's plain-strain model and complex stiffness method to consider viscous-type damping. The analytical solutions for the dynamic impedance, the velocity admittance and the reflected signal of wave velocity at the pile head are also derived and subsequently verified by comparison with existing solutions. An extensive parametric analysis is further performed to examine the effects of shear modulus, viscous damping coefficient, coefficient of disturbance degree, weakening or strengthening range of surrounding soil and longitudinal soft or hard interbedded layer on the velocity admittance and the reflected signal of wave velocity at the pile head. It is demonstrated that the proposed model and the obtained solutions provide extensive possibilities for practical application compared with previous related studies.

Centrifuge shaking table tests on a friction pendulum bearing isolated structure with a pile foundation in soft soil

  • Shu-Sheng, Qu;Yu, Chen;Yang, Lv
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.517-526
    • /
    • 2022
  • Previous studies have shown that pile-soil interactions have significant influences on the isolation efficiency of an isolated structure. However, most of the existing tests were carried out using a 1-g shaking table, which cannot reproduce the soil stresses resulting in distortion of the simulated pile-soil interactions. In this study, a centrifuge shaking table modelling of the seismic responses of a friction pendulum bearing isolated structure with a pile foundation under earthquakes were conducted. The pile foundation structure was designed and constructed with a scale factor of 1:100. Two layers of the foundation soil, i.e., the bottom layer was made of plaster and the upper layer was normal soil, were carefully prepared to meet the similitude requirement. Seismic responses, including strains, displacement, acceleration, and soil pressure were collected. The settlement of the soil, sliding of the isolator, dynamic amplification factor and bending moment of the piles were analysed to reveal the influence of the soil structure interaction on the seismic performance of the structure. It is found that the soil rotates significantly under earthquake motions and the peak rotation is about 0.021 degree under 24.0 g motions. The isolator cannot return to the initial position after the tests because of the unrecoverable deformation of the soil and the friction between the curved surface of the slider and the concave plate.

Nonlinear numerical analysis of influence of pile inclination on the seismic response of soil-pile-structure system

  • Lina Jaber;Reda Mezeh;Zeinab Zein;Marc Azab;Marwan Sadek
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.437-447
    • /
    • 2023
  • Inclined piles are commonly used in civil engineering constructions where significant lateral resistance is required. Many researchers proved their positive performance on the seismic behavior of the supported structure and the piles themselves. However, most of these numerical studies were done within the framework of linear elastic or elastoplastic soil behavior, neglecting therefore the soil non-linearity at low and moderate soil strains which is questionable and could be misleading in dynamic analysis. The main objective of this study is to examine the influence of the pile inclination on the seismic performance of the soil-pile-structure system when both the linear elastic and the nonlinear soil models are employed. Based on the comparative responses, the adequacy of the soil's linear elastic behavior will be therefore evaluated. The analysis is conducted by generating a three-dimensional finite difference model, where a full interaction between the soil, structure, and inclined piles is considered. The numerical survey proved that the pile inclination can have a significant impact on the internal forces generated by seismic activity, specifically on the bending moment and shear forces. The main disadvantages of using inclined piles in this system are the bending forces at the head and pile-to-head connection. It is crucial to account for soil nonlinearity to accurately assess the seismic response of the soil-pile-structure system.

An Evaluation on the Seismic Stability of a Railway Bridge Pile Foundation Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 철도 교량하부 말뚝 기초의 내진 안정성 평가)

  • 이기호;신민호
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.29-40
    • /
    • 2003
  • In this study, the three dimensional pile-soil dynamic interaction analysis of the railway bridge pile foundation was performed using SASSI 2000 program and the applicability of SASSI 2000 about an evaluation of the seismic stability of a pile foundation was examined. The numerical analysis was executed on the two site of actual construction and input properties such as the acceleration of bedrock were estimated by one dimensional seismic response analysis using the Pro-SHAKE. Consequently, all the piles of the subject of investigation showed that displacement occurred within a permitted limit and the shear force and moment largely occurred at the point where the soil stiffness varied rapidly.

Wind-induced responses of supertall buildings considering soil-structure interaction

  • Huang, Yajun;Gu, Ming
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.223-234
    • /
    • 2018
  • In this study, a simplified three-dimensional calculation model is developed for the dynamic analysis of soil-pile group-supertall building systems excited by wind loads using the substructure method. Wind loads acting on a 300-m building in different wind directions and terrain conditions are obtained from synchronous pressure measurements conducted in a wind tunnel. The effects of soil-structure interaction (SSI) on the first natural frequency, wind-induced static displacement, root mean square (RMS) of displacement, and RMS of acceleration at the top of supertall buildings are analyzed. The findings demonstrate that with decreasing soil shear wave velocity, the first natural frequency decreases and the static displacement, RMS of displacement and RMS of acceleration increase. In addition, as soil material damping decreases, the RMS of displacement and the RMS of acceleration increase.

Natural frequency of bottom-fixed offshore wind turbines considering pile-soil-interaction with material uncertainties and scouring depth

  • Yi, Jin-Hak;Kim, Sun-Bin;Yoon, Gil-Lim;Andersen, Lars Vabbersgaard
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.625-639
    • /
    • 2015
  • Monopiles have been most widely used for supporting offshore wind turbines (OWTs) in shallow water areas. However, multi-member lattice-type structures such as jackets and tripods are also considered good alternatives to monopile foundations for relatively deep water areas with depth ranging from 25-50 m owing to their technical and economic feasibility. Moreover, jacket structures have been popular in the oil and gas industry for a long time. However, several unsolved technical issues still persist in the utilization of multi-member lattice-type supporting structures for OWTs; these problems include pile-soil-interaction (PSI) effects, realization of dynamically stable designs to avoid resonances, and quick and safe installation in remote areas. In this study, the effects of PSI on the dynamic properties of bottom-fixed OWTs, including monopile-, tripod- and jacket-supported OWTs, were investigated intensively. The tower and substructure were modeled using conventional beam elements with added mass, and pile foundations were modeled with beam and nonlinear spring elements. The effects of PSI on the dynamic properties of the structure were evaluated using Monte Carlo simulation considering the load amplitude, scouring depth, and the uncertainties in soil properties.

A Group Pile Effect on Changing Size of Pile Cap in Group Pile under Sand Soil in Earthquake (지진 시 사질토 지반에 근입된 무리말뚝의 말뚝 캡 크기가 무리말뚝 효과에 미치는 영향)

  • Lee, Hyunkun;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.10
    • /
    • pp.39-46
    • /
    • 2019
  • The interaction between the ground and structures should be considered for seismic design of group piles supporting the superstructure. The p-y curve has been used widely for the analysis of nonlinear relationship between the ground and structures, and various researches have conducted to apply the dynamic p-y curve for seismic design of group piles. This curve considers the interaction between the ground and structures under the dynamic load such as an earthquake. However the supported effect by the pile cap and the interaction by inertia behavior of superstructures. Therefore, the shaking table test was conducted to verify the effect of the change of the pile cap in group piles supporting superstructures embedded in sandy soil. The test condition is that the arrangement and distance between centers of piles are fixed and the length of the pile cap is changed for various distances between the pile cap side and the pile center. The result shows that the distance between the pile cap side and the pile center have an effect on the dynamic p-y curve and the effect of group piles.

Dynamic Analysis of Soil-Pile-Structure Interaction Considering a Complex Soil Profile (복잡한 지반층을 고려한 지반-말뚝-구조물의 상호작용 동해석)

  • Park, Jang-Ho;Park, Jae-Gyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.21-28
    • /
    • 2009
  • The precise analysis of soil-pile-structure interaction requires a proper description of soil layer, pile, and structure. In commonly used finite element simulations, mesh boundaries should match the material discontinuity line. However, in practice, the geometry of soil profiles and piles may be so complex that mesh alignment becomes a wasteful and difficult task. To overcome these difficulties, a different integration method is adopted in this paper, which enables easy integration over a regular element with material discontinuity regardless of the location of the discontinuity line. By applying this integration method, the mesh can be generated rapidly and in a highly structured manner, leading to a very regular stiffness matrix. The influence of the shape of the soil profile and piles on the response is examined, and the validity of the proposed soil-pile structure interaction analysis method is demonstrated through several examples. It is seen that the proposed analysis method can be easily used on soil-pile-structure interaction problems with complex interfaces between materials to produce reliable results regardless of the material discontinuity line.

2D Numerical Simulation of a Dynamic Centrifuge Test for a Pile-Supported Structure (2차원 수치해석을 이용한 말뚝 지지구조물의 동적 원심모형실험 거동 모사)

  • Chanh, Pham Viet;Tran, Nghiem Xuan;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.8
    • /
    • pp.15-26
    • /
    • 2018
  • Recently, as the seismic performance based design methods have been introduced, dynamic numerical analyses need to be performed to evaluate the actual performance of structures under earthquakes. The verification of the numerical modeling is the most important for the performance based design. Therefore, 2-dimensional numerical analyses were performed to simulate the seismic behavior of a pile-supported structure, to provide the proper numerical modeling and to determine of input parameters. A dynamic centrifuge test of a pile group in dry loose sand was simulated to verify the applicability of the numerical model. The numerical modeling was carefully made to reflect the actual condition of the centrifuge test including dynamic soil properties, soil-pile interaction, boundary condition, the modeling of the group pile and structure and so on. The predicted behavior of the numerical analyses successfully simulated the acceleration variation in ground, the moment and displacement of the pile, and the displacement and acceleration of the structure. Therefore, the adopted numerical modeling and the input parameters can be used to evaluate the seismic performance of pile groups.

Evaluation of Dynamic p-y Curves of Group Piles Using Centrifuge Model Tests (원심모형실험을 이용한 무리말뚝의 동적 p-y 곡선 산정)

  • Nguyen, Bao Ngoc;Tran, Nghiem Xuan;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.5
    • /
    • pp.53-63
    • /
    • 2018
  • Dynamic soil-pile interaction is the main concern in the design of group piles under earthquake loadings. The lateral resistance of the pile group under dynamic loading becomes different from that of a single pile due to the group pile effect. However, this aspect has not yet been properly studied for the pile group under seismic loading condition. Thus, in this study the group pile effect was evaluated by performing a series of dynamic centrifuge tests on $3{\times}3$ group pile in dry loose sand. The multiplier coefficients for ultimate lateral resistance and subgrade reaction modulus were suggested to obtain the p-y curve of the group pile. The suggested coefficients were verified by performing the nonlinear dynamic analyses, which adopted Beam on Nonlinear Winkler Foundation model. The predicted behavior of the pile group showed the reasonable agreement compared with the results of the centrifuge tests under sinusoidal wave and artificial wave.