• Title/Summary/Keyword: Pile reinforcing

Search Result 83, Processing Time 0.028 seconds

An analysis of problems and countermeasures in the installation of plastic greenhouse on reclaimed lands (간척지에 플라스틱 온실 설치 시의 문제점 분석 및 개선방안)

  • Yu, In-Ho;Ku, Yang-Gyu;Cho, Myeong-Whan;Ryu, Hee-Ryong;Moon, Doo-Gyung
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.473-480
    • /
    • 2014
  • Upon setting up a dedicated plastic greenhouse for tomato cultivation developed by the Rural Development Administration on the Gyehwa reclaimed land, this study was aimed at analyzing the problems can be occurred in the installation of plastic greenhouse on reclaimed lands as well as finding out solutions for improvement. A relatively cheaper wooden pile was used in the installation in order to supplement the soft ground conditions. Based on the results of ground investigation of the installation site, both the allowable bearing capacity and pulling resistance of the wooden pile with a diameter of 150 mm and a length of 10 m were computed and came out to be 30.645 kN. It was determined that the values were enough to withstand the maximum compressive force (17.206 kN) and the pullout force (20.435 kN) that are generally applied to the greenhouse footing. There are three problems aroused in the process of greenhouse installation, and the corresponding countermeasures are as follow. First, due to the slightly bent shape of the wooden pile, there were phenomenon such as deviation, torsion, and fracture when driving the pile. This could be prevented by the use of the backhoe (0.2) rotating tongs, which are holding the pile, to drive the pile while pushing to the direction of the driving and fixing it until 5 m below ground and applying a soft vibrating pressure until the first 2 m. Second, there exists a concrete independent footing between the column of the greenhouse and the wooden pile driven to the underground water level. Since it is difficult to accurately drive the pile on this independent footing, the problem of footing baseplate used to fix the column being off the independent footing was occurred. In order to handle with this matter, the diameter of the independent footing was changed from 200 mm to 300 mm. Last, after films were covered in the condition that the reinforcing frame and bracing are not installed, there was a phenomenon of columns being pushed away by the strong wind to the maximum of $11m{\cdot}s^{-1}$. It is encouraged to avoid constructions in winter, and the film covering jobs always to be done after the frame construction is completely over. The height of the independent footing was measured for 9 months after the completion of the greenhouse installation, and it was found to be within the margin of error meaning that there was no subsidence. The extent to the framework distortion and the value of inclinometers as well showed not much alteration. In other words, the wooden pile was designed to have a sufficient bearing capacity.

Effective Strength of 3-Dimensional Concrete Strut (3차원 콘크리트 스트럿의 유효강도)

  • Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.403-413
    • /
    • 2014
  • For the reliable design of the structural concrete by the strut-tie model approaches of current design codes, the effective strengths of concrete struts must be determined with sufficient accuracy. Many values and equations for the effective strengths have been suggested until now. As those are for the two-dimensional concrete struts, however, it is inappropriate to employ them in the strut-tie model designs of three-dimensional structural concretes. In this study, an approach, that determines the effective strengths of three-dimensional concrete struts consistently and accurately by reflecting the state of 3-dimensional stresses, the 3-dimensional failure criteria of concrete, the degree of cracks (or tensile strains of reinforcing bars crossing the struts), the strut's longitudinal length, the deviation angle between strut orientation and compressive principal stress flow, compressive strength of concrete, and the degree of concrete confinement by reinforcing bars, is proposed. To examine the validity of the proposed approach, the ultimate strength analyses of 115 reinforced concrete pile caps tested to failure by previous investigators were conducted by the ACI 318-11's strut-tie model approach with the existing and proposed effective strengths of concrete struts.

A Case Study of Post-Grouted Drilled Shaft in Weathered Rock (풍화암소켓 대구경 현장타설말뚝의 선단보강그라우팅 사례)

  • Kwon, Oh-Sung;Jung, Sung-Min;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.5-16
    • /
    • 2011
  • Post-grouting for the drilled shaft is known to remarkably increase the end bearing capacity of pile by consolidating and reinforcing the disturbed ground containing slime around the pile tip. However, the general design guideline for post-grouting has not been established yet in Korea. Especially in the domestic application, the post-grouting is employed just for repairing the pile with unacceptable resistance rather than for increasing the design resistance of pile. Therefore, little is reported about the effect of post-grouting on the pile resistance itself. In this study, the effect of post-grouting on the resistance of drilled shafts installed in the weathered rock in Korea was estimated by performing the bi-directional load tests on the piles with and without the post-grouting. The test results presented that the initial slope of end bearing-base displacement curve in the pile with post-grouting was 4 times higher than that without post-grouting. At the acceptable settlement (1% of pile diameter), the end bearing capacities of piles with and without the post-grouting were estimated to be 12.0 MPa and 7.0 MPa, respectively, which indicate that the post-grouting could increase the end bearing resistance of pile in weathered rock more than 70%.

Pile-cap Connection Behavior between Hollow-Head Precast Reinforced Concrete Pile and Foundation (프리캐스트 철근콘크리트 중공 말뚝과 기초 접합부 반복가력 거동)

  • Bang, Jin-Wook;Jo, Young-Jae;Ahn, Kyung-Chul;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.71-77
    • /
    • 2019
  • Recently, most of the pile foundations have been applied as a method to transfer the heavy load of the structure to the ground with high bearing capacity. In this study, the pile-cap behavior between foundation and hollow-head precast reinforced concrete(HPC) pile reinforced with longitudinal rebar and filling concrete was experimentally evaluated depending on the cyclic load and reinforcement ratio. As the drift ratio increases, it was found that the cracks pattern and fracture behavior of two types of pile-cap specimens according to the reinforcement ratio were evaluated to be similar. As the reinforcement ratio increases by 1.77 times, the BS-H25 specimen increases the maximum load by 1.47 times compared to the BS-H19 specimen. However, the ductility ratio of positive and negative was decreased by 76% and 70% respectively. After the yielding of the pile-cap reinforcing rebars, the positive and negative stiffness of the all specimens were decreased by a range from 66% to 71% and a range from 54% to 57% respectively, and the average stiffness of BS-H25 specimen is 13% higher than that of BS-H19 specimen. The cumulative dissipated energy capacity of BS-H19 and BS-H25 specimen under ultimate load state is 5.5 times and 6.6 times higher than that of service load state.

Soil Arching in Embarikments Suppoyed by Piles with Geosynthethics (말뚝과 토목섬유로 지지된 성토지반의 아칭효과)

  • Hong, Won-Pyo;Lee, Jae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.53-66
    • /
    • 2007
  • A series of model tests were performed to investigate the soil arching effect in embankments supported by piles with geosynthetics. In the model tests, model piles with isolated cap were inserted through the holes in a steel plate, which could be operated up and down. Then geosynthetics was laid on the pile caps below sand fills. The settlement of soft ground was simulated by lowering the plate. As the plate was lowered, the soil arching was mobilized in the embankments. The deformation of both the sand fills and geosynthetics were captured by camera. Also the loads acting on pile cap and the tensile strain of geosynthetics were monitored by data logging system. Model tests showed that the embankment loads transferred on pile cap by soil arching Increased rapidly with settlement of the soft ground. In case of the absence of geosynthetics, the loads acting on pile caps dropped to residual value after peak value, whereas loads on pile caps gradually increased until constant value in case of geosynthetic-reinforced. This illustrated that reinforcing with the geosynthetics has a good effect to restrain the settlement of embankments. Also, the deformation shape of geosynthetics between pile caps was circular. The embankment loads transferred on pile caps can be estimated by considering both soil arching and tensile strain of geosynthetics in embankments supported by piles with geosynthetics.

Analysis of Plastic Hinge on Pile-Bent Structure with Varying Diameters (변단면 단일 현장타설말뚝의 소성힌지 영향분석)

  • Ahn, Sangyong;Jeong, Sangseom;Kim, Jaeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.149-158
    • /
    • 2010
  • In this study, the behavior of Pile-Bent structure with varying diameters subjected to lateral loads were evaluated by a load transfer approach. An analytical method based on the beam-column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic, yielding) and P-${\Delta}$ effect. For an effective analysis of behavior Pile-Bent structure, the bending moment and fracture lateral load of material were evaluated. And special attention was given to lateral behavior of Pile-Bent structures depending on reinforcing effect of materials and ground conditions. Based on the parametric study, it is shown that the maximum bending moment is located within a depth (plastic hinge) approximately 1~3D (D: pile diameter) below ground surface when material non-linearity and P-${\Delta}$ effect are considered. And distribution of the lateral deflections and bending moments on a pile are highly influenced by the effect of yielding. It is also found that this method considering material yielding behavior and P-${\Delta}$ effect can be effectively used to perform the preliminary design of Pile-bent structures.

Detecting Steel Pile Using Bore-hole 3-components Fluxgate Magnetometer (강관말뚝 탐지를 위한 시추공 3성분 자기탐사)

  • Lee, Heui-Soon;Rim, Hyoung-Rea;Jung, Ho-Joon;Jung, Hyen-Key;Yang, Jun-Mo
    • Journal of the Korean earth science society
    • /
    • v.31 no.7
    • /
    • pp.673-680
    • /
    • 2010
  • A steel pile often utilized to bear heavy loads of the upper sub-structure, e. g., bridge constructions and tall buildings. As the steel piles are driven in the underground, it is not easy to detect the depth of the existing pile foundation when there is no detailed foundation information available. However, accurate informations of the depths of piles becomes critical required when reinforcing the existing structures or constructing new ones at the adjacent stage to assure the safety of existing structures. In this study, we tested the applicability of the three components borehole fluxgate magnetometer for detecting the depths and locations of steel piles which are commonly used in civil engineering. Results showed that the information of location as well as the depth of steel piles could be obtained by using data from the three components borehole fluxgate magnetometer.

Experimental Study on Bearing Capacity of Ground Treated by Sand Compaction Piles (모래다짐말뚝(SCP) 시공지반의 지지력에 관한 실험적 연구)

  • 김병일;김영욱;이상익;최용성
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.39-47
    • /
    • 2004
  • The SCP(sand compaction pile) method which is a vertical reinforcing technique for soft ground using a sand compaction pile has received increasing popularity in Korea. Currently, there are different methods to evaluate the bearing capacity of the reinforced ground by the SCP method. However, a method that can consider the effect of the replacement ratio on the bearing capacity is not yet available. This study investigated the effect of the replacement ratio on the bearing capacity of the reinforced ground by the SCP method. The study involved laboratory experiments which were conducted on a centrifuge facility. Test conditions included various ranges of replacement ratios (20, 30, and 40%), centrifuged consolidation, and loading. From the results of the study, a method which can evaluate the bearing capacity of the reinforced ground was proposed and verified using the weighted average of the replacement ratio.

Investigation of divergence tunnel excavation according to horizontal offsets between tunnels

  • Hong, Soon-Kyo;Oh, Dong-Wook;Kong, Suk-Min;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.111-122
    • /
    • 2020
  • In most cases in urban areas, construction of divergence tunnel should take into account proximity to existing tunnel in operation. This inevitably leads to deformation of adjacent structures and surrounding ground. Preceding researches mainly dealt with reinforcing of the diverging section for the stability including the pillar. This has limitations in investigating the interactive effects between existing structures and surrounding ground due to the excavation of the divergence tunnel. In this study, the complex interactive behavior of pile, the operating tunnel, and the surrounding ground according to horizontal offsets between the two adjacent tunnels was quantitatively analyzed based on conditions diverged from operating tunnel in urban areas. The effects on ground structures confirmed by analyzing the ground surface settlements, pile settlements, and the axial forces of the pile. The axial forces of lining in operating tunnel investigated to estimate their impact on existing tunnel. In addition, in order to identify the deformation of the surrounding ground, the close range photogrammetry applied to the laboratory model test for confirming the underground displacements. Two-dimensional finite element numerical analysis was also performed and compared with the results. It identified that the impact of excavating a divergence tunnel decreased as the horizontal offset increased. In particular, when the horizontal offset was larger than 1.0D (D is the diameter of operating tunnel), the impact on existing structures further reduced and the deformation of surrounding ground was concentrated at the top of the divergence tunnel.

A Study on the Stabilizing Method against Landslide using Slide Suppressor Wall (산사태 억지벽체공법에 관한 연구)

  • Kim, Hong-Taek;Gang, In-Gyu;Yeom, Gyeong-Seop
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.06c
    • /
    • pp.94-110
    • /
    • 1994
  • This paper Voposes a stabilizing method against landslide using slide suppressor wall reinforced with soil nails. Included are a Evuedlwe to predict earth Uessures acing on nailed-slide suppressor wall and a method of analysis of the laterally loaded concrete pile. Based rut the Voposed Vocedure, the emcignt installation type and inclusion angle of nails are analyzed. Also, optimum location of the slide suppressor wall composed of concrete panel and stabilizing pile is examined using the UC Vogram. Finally, an example is given to illustrate the analysis and desisa procedure of the proposed slope reinforcing method.

  • PDF