• Title/Summary/Keyword: Pile load test

Search Result 552, Processing Time 0.038 seconds

Analytical Technique and Load Transfer Features on Pile Using Finite Difference Method (유한차분법을 이용한 말뚝의 하중전이특성 및 해석기법)

  • Han, Jung-Geun;Lee, Jae-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.5
    • /
    • pp.10-21
    • /
    • 2006
  • For analyze of the bearing capacity, skin friction and settlements of pile on axial compressive loading, both Load transfer tests of pile and pile loading test in field have application to commonly before pile installing. A bearing capacity of pile was affected by the characteristics of surrounding ground of pile. Especially, that is very different because of evaluation of settlement due to each soil conditions of ground depths. The ground characteristics using evaluation of bearing capacity of pile through load transfer analysis depends on N values of SPT, and then a bearing capacity of pile installed soft ground and refilled area may be difficult to rational evaluation. An evaluation of bearing capacity on pile applied axial compressive loading was effected by strength of ground installed pile, unconfined compressive strength at pile tip, pile diameter, rough of excavated surface, confining pressure and deformation modules of rock etc and these are commonly including the unreliability due to slime occurred excavation works. Load transfer characteristics considered ground conditions take charge of load transfer of large diameter pile was investigated through case study applied load transfer tests. To these, matrix analytical technique of load transfer using finite differential equation developed and compared with the results of pile load test.

Load-settlement curve combining base and shaft resistance considering curing of cement paste

  • Seo, Mi Jeong;Park, Jong-Bae;Lee, Dongsoo;Lee, Jong-Sub
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.407-420
    • /
    • 2022
  • Embedded piles, which are typically used in Korea, are precast piles inserted into prebored ground with cement paste. Dynamic pile tests tend to underestimate the bearing capacity of embedded piles because of the undeveloped shaft resistance prior to the curing of the cement paste and the insufficient energy transferred after the curing. In this study, a resistance combination method using the base resistance before the cement paste is cured and the shaft resistance after the cement paste is cured is proposed to obtain a combined load-settlement curve from dynamic pile tests. Two pairs of embedded piles with diameters of 600 and 500 mm are installed. Each pair comprises one pile for the dynamic pile test and another pile for the static load test. The shape of the load-settlement curve obtained using the proposed method is similar to that obtained from the static load test. Thus, the resistances evaluated using the proposed method at selected settlements are similar to those obtained from the static load test. This study shows that the resistance combination method may be used effectively in dynamic pile tests to accurately evaluate the bearing capacity of embedded piles.

Characteristics of Bearing Capacity for H pile by Model Test (모형실험을 이용한 H말뚝의 지지력 특성)

  • 오세욱;이준대
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.99-105
    • /
    • 2001
  • This paper presents results km a series of model tests oil vertically loaded single piles to compare the behaviors of H and pipe piles under the same ground condition. The aims of this paper were to compare the bearing capacity of H-pile md pipe piles under in the same ground condition and to estimate the effect of gravity acceleration and relative soil density. Relative density of soil were made to be 40%, 80% and embedded length of pile on sand was increased by 10, 12, 14, 16 times of the diameter of pile, respectively. As a results of test series, allowable load of H-pile is from 6.4% to 18.2% larger than allowable load of pipe pile in relative density 80% and from 9.1% to 39.4% larger than allowable load of pipe pile in relative density 40%. As a results of numerical analysis, we were predicted behaviour of stress-displacement of pile with model test. In the case of relative density 80% and 40%, bearing capacity of H pile represent from 17.74% to 18.6% larger than allowable load of pipe pile.

  • PDF

Estimation of Bearing Capacity for Open-Ended Pile Considering Soil Plugging (폐색정도를 고려한 개단말뚝의 지지력 산정)

  • 백규호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.397-404
    • /
    • 2002
  • The bearing capacity of open-ended piles is affected by the degree of soil plugging, which is quantified by the IFR. There is not at present a design criterion for open-ended piles that explicitly considers the effect of IFR on pile load capacity In order to investigate this effect, model pile load tests using a calibration chamber were conducted on instrumented open-ended piles. The results of these tests show that the IFR increases with increasing relative density and increasing horizontal stress of soils. The unit base and shaft resistances decrease with increasing IFR. Based on the results of the model pile tests, new empirical relations for base load capacity and shaft load capacity of open-ended piles are proposed. In order to check the accuracy of predictions made with the proposed equations, the equations were applied to the full-scale pile load test preformed in this study, Based on the comparisons with the pile load test results, the proposed equations appear to produce satisfactory predictions.

  • PDF

Study of Smart Bi-directional Pile Load Test by Model Test (모형시험을 통한 Smart 양방향말뚝 재하시험에 관한 연구)

  • Kim, Nak-Kyung;Kim, Ung-Jin;Joo, Yong-Sun;Kim, Sung-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1088-1093
    • /
    • 2010
  • The Smart bi-directional pile load test with variable end plate overcomes the shortcoming of the Osterberg cell test. It is possible that the ultimate bearing capacity of piles can be known by using two different end plates. The first step is to measure end bearing capacity with smaller end plate and the second step is similar to the conventional O-cell test. In this study, model test was performed to evaluate the smart bi-directional pile load test in sand. Vertical displacement of the model pile were messured at the axial loading condition.

  • PDF

The Settlement Characteristics of Large Drilled Shafts Embedded into the Rocks (암반에 근입된 대구경 현장타설말뚝의 침하특성)

  • Hong, Won-Pyo;Yea, Geu-Guwen;Nam, Jung-Man;Lee, Jae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.9-16
    • /
    • 2005
  • The purpose of this study is to investigate the settlement characteristics of large drilled shafts embedded into bed rocks. To perform this research, 35 pile load test results for the large drilled shafts are used, because these deep foundations generally used as substructure systems for grand bridges. In case of the yield load can not be easily determined by load(P)-settlement(S) curve from the pile load test at the maximum loads, the standard settlements which can determine a yield load is established. The residual settlement equation of pile embedded in gneiss and igneous rocks is presented in this study. Also a equation is proposed to characterize the relationship between loads and elastic settlements in pile load tests on the large drilled shaft embedded into bedrock. Then, large drilled shaft's settlement characteristics are examined on pile length, pile diameter and pile's socked depth into rock at the pile tip.

  • PDF

Development of an integrated Web-based system with a pile load test database and pre-analyzed data

  • Chen, Yit-Jin;Liao, Ming-Ru;Lin, Shiu-Shin;Huang, Jen-Kai;Marcos, Maria Cecilia M.
    • Geomechanics and Engineering
    • /
    • v.7 no.1
    • /
    • pp.37-53
    • /
    • 2014
  • A Web-based pile load test (WBPLT) system was developed and implemented in this study. Object-oriented and concept-based software design techniques were adopted to integrate the pile load test database into the system. A total of 673 case histories of pile load test were included in the database. The data consisted of drilled shaft and driven precast concrete pile axial load tests in drained, undrained, and gravel loading conditions as well as pre-analyzed data and back-calculated design parameters. Unified modeling language, a standard software design tool, was utilized to design the WBPLT system architecture with five major concept-based components. These components provide the static structure and dynamic behavior of system message flows in a visualized manner. The open-source Apache Web server is the building block of the WBPLT system, and PHP Web programming language implements the operation of the WBPLT components, particularly the automatic translation of user query into structured query language. A simple search and inexpensive query can be implemented through the Internet browser. The pile load test database is helpful, and data can be easily retrieved and utilized worldwide for research and advanced applications.

Analysis on Behavior of Vertically Loaded Single Pile included in Pile Group (무리말뚝을 구성하는 외말뚝의 연직방향 하중지지 거동분석)

  • Lee, Seung-Hyun;Kim, Byoung-Il;Yoo, Wan-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4863-4868
    • /
    • 2012
  • Static pile load tests were conducted on the two piles which comprised group pile installed in sand and the test results were compared with those obtained from load transfer method. Predicted load bearing capacity of the pile which locates center portion of the group pile was less than that from the load test and the reason is thought to be the densification of the soil due to the installation of the group pile. Predicted pile capacity of the API method, Coyle and Sulaiman method were 77%, 90% of the bearing capacity obtained from the load test, respectively. Comparing ultimate bearing capacities of the pile locating at the edge of the group pile, those predicted by the API method, Coyle and Sulaiman method were 1.1 times, 1.3 times of the bearing capacity obtained from the pile load test, respectively.

Study on large tonnage pile foundation load test system and field test of long rock-socketed pile

  • Zhang, Xue-feng;Ni, Ying-sheng;Song, Chun-xia;Xu, Dong
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.565-570
    • /
    • 2020
  • Large tonnage pile foundation load test system is designed in this paper by using pre-stressed technique to optimize the design of anchor pile reaction beam system, in which project pile can be successfully taken as anchor pile. The test results show that the cracks and excessive deformations of the prestressed anti-force device designed in this study have not occurred, and the prestressed tendons of the anchor pile ensure that the anchor pile will not be pulled and fractured, and the prestressed tendons can be reused, thus ensuring the safety and reliability of the test. This test method can directly test bearing capacity of long rock-socketed piles, and analysis bearing behaviors from test results of sensors which embedded in the pile. Through test studied, authors summarized the vertical bearing characteristics of long rock-socketed piles and the main problems that should be paid attention to during design and construction, and provided reliable solutions.