• 제목/요약/키워드: Pile installation

검색결과 179건 처리시간 0.024초

End shape and rotation effect on steel pipe pile installation effort and bearing resistance

  • Saleem, Muhammad A.;Malik, Adnan A.;Kuwano, Jiro
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.523-533
    • /
    • 2020
  • The current study focuses on the effect of the end shape of steel pipe piles on installation effort and bearing resistance using the pressing method of installation under dense ground conditions. The effect of pile rotation on the installation effort and bearing resistance is also investigated. The model steel piles with a flat end, cone end and cutting-edge end were used in this study. The test results indicated that cone end pile with the pressing method of installation required the least installation effort (load) and showed higher ultimate resistance than flat and cutting-edge end piles. However, pressing and rotation during cutting-edge end pile installation considerably reduces the installation effort (load and torque) if pile penetration in one rotation equal to the cutting-edge depth. Inclusion of rotation during pile installation reduces the ultimate bearing resistance. However, if penetration of the cutting-edge end pile equal to the cutting-edge depth in one rotation, the reduction in ultimate resistance can be minimized. In comparing the cone and cutting-edge end piles installed with pressing and rotation, the least installation effort is observed in the cutting-edge end pile installed with penetration rate equal to the cutting-edge depth per rotation.

A novel approach for predicting lateral displacement caused by pile installation

  • Li, Chao;Zou, Jin-feng;Li, Lin
    • Geomechanics and Engineering
    • /
    • 제20권2호
    • /
    • pp.147-154
    • /
    • 2020
  • A novel approach for predicting lateral displacement caused by pile installation in anisotropic clay is presented, on the basis of the cylindrical and spherical cavities expansion theory. The K0-based modified Cam-clay (K0-MCC) model is adopted for the K0-consolidated clay and the process of pile installation is taken as the cavity expansion problem in undrained condition. The radial displacement of plastic region is obtained by combining the cavity wall boundary and the elastic-plastic (EP) boundary conditions. The predicted equations of lateral displacement during single pile and multi-pile installation are proposed, and the hydraulic fracture problem in the vicinity of the pile tip is investigated. The comparison between the lateral displacement obtained from the presented approach and the measured data from Chai et al. (2005) is carried out and shows a good agreement. It is suggested that the presented approach is a useful tool for the design of soft subsoil improvement resulting from the pile installation.

무리말뚝 시공의 영향 (The effect of group pile installation)

  • 이명환;홍헌성;김성회;전영석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1303-1311
    • /
    • 2006
  • Most of the piles are designed as group piles. In certain geotechnical environments, the installation of group piles causes heaving of the already installed piles. The unfavorable effects of pile heaving on pile bearing capacity have been well known to field engineers. However not many engineers pay enough attention to this subject. According to our recent researches, not only the bearing capacity but also the pile material could be seriously damaged due to the installation of nearby piles, especially with the cases of precast concrete piles. When the pull-out force due to installation of neighboring piles acting on the already installed precast concrete pile exceeds the shaft friction, pile heaving occurs. At the same time, if the pull-out force exceeds the allowable tensile strength of the precast concrete pile, tensile failure is inevitable, which is critical for the pile integrity. In other cases the pile material was not damaged but serious relaxation occurred as the results of pile heaving. In this paper, the pull-out mechanism due to the installation of group piles is explained.

  • PDF

항타 말뚝에서 항타관리시스템(Pile Installation Recorder-Driven Pile)의 적용성에 관한 연구 (Study on Application of PIR-D(Pile Installation Recorder-Driven Pile) in Driven Pile)

  • 박봉근;박민철;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.28-35
    • /
    • 2004
  • Driven pile has the excellent bearing characteristics and good economics, so it is known as the comparative piling method. To use the advantages of driven pile fully, it is necessary to perform the proper construction management. Engineers must drive pile to the proper bearing layer with proper blow energy and measure the blow count and penetration per certain depth to analyze the bearing capacity and driveability. In conventional method, these parameters have been measured manually so it was difficult to get good accuracy. After PIR-D(Pile Installation Recorder-Driven Pile) was attached to the driving equipment, the hammer efficiency, blow count and penetration in blow/10cm were measured automatically. In this paper, to givethe rational judgement criteria of bearing layer, driveability, blow/10cm according to pile depth during pile driving, the some relationship between the driving resistance and ground layer distribution was analyzed. The ground investigation during piles (PHC ${\Phi}450,\;{\Phi}400\;&\;Steel\;Pile\;{\Phi}609{\ast}16t$) installation in the marine clay layer in Incheon, the sandy soil layer in Yongin and the tuff layer in Pusan was done. And measuring hammer efficiency not doing recently, we could compare hammer efficiency(Eh) by PIR-D and energy transfer ratio(ETR) by Pile Dynamic Analyzer(PDA).

  • PDF

무용접 장대강관말뚝 공법의 항타 및 지지력 특성 (Characteristics of Driving Efficiency and Bearing Capacity for Non-welded Long Steel Pipe Pile Method)

  • 백규호;이상일;박진석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.381-388
    • /
    • 1999
  • The existing methods for installation of long steel pipe pile have some uneconomical problems such as increase of installation cost and period due to the welding of two piles and removal of soil plug, and decrease of driving efficiency due to the increase of driving resistance by time effect during the welding of piles and removal of soil plug, etc. Thus, in this study, new installation method for long steel pipe pile is suggested to work out the existing problems, and calibration chamber tests are peformed to investigate both driving and economical efficiency for the suggested method. The test results showed that the new installation method has increase bearing capacity as well as reduce installation cost and period for long steel pipe piles as compared with existing methods.

  • PDF

Suction Pile 공법 개요 및 그 적용 (Introduction of Suction Pile Technology)

  • 조영기;방상철;박중배;곽대진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 지반환경 및 준설매립에관한 학술세미나
    • /
    • pp.110-121
    • /
    • 2001
  • The interest in suction piles by the oil industry was risen in the middle of 1980's. Recently, suction piles have been applied increasingly in offshore engineering due to its low cost, simplicity, efficiency, and reliability. Suction piles have normally been used as anchors of floating structures and foundations of marine structures in deep-water locations. Suction piles have several technical advantages over conventional piles and anchors; fast and easy installation at any depth of water, extremely large resistance due to its huge size, and easy retrieval by applying a positive suction pressure inside the pile, etc. Daewoo E&C Co., Ltd. has conducted a series of field suction pile installation and loading tests inside the Okpo harbor located in Geojedo and the Onsan harbor in Ulsan, Korea, during the summer of 2001, which may provide additional validation of the analytical solutions previously developed by the US Naval Facilities Engineering Service Center. This is a brief description of the general mechanisms of suction pile installation and loading capacity based on the study conducted by the US Navy and Daewoo E&C Co., Ltd.

  • PDF

슬래브궤도 하부의 마이크로파일 설치효과 수치해석 (Numerical analyses on the effects of micro pile installation beneath slab tracks)

  • 이수형;김대상;이일화;정충기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.922-927
    • /
    • 2004
  • The bending moment and settlement of the slab track can be reduced by the installation of small numbers of micro piles beneath the track. This paper presents the effect of micro pile installation on the reduction of bending moment and settlement of slab track, estimated by a numerical method. The slab track is modeled as a plate based on the Mindlin's plate theory, and soil and piles are modeled as Winkler and coupled springs, respectively. The stiffness of piles is obtained by the approximate analytical method proposed by Randolph and Wroth. and the modulus of subgrade reaction is adopted to evaluate Winkler spring constant. From the analysis results, the effect of the micro pile installation is significant to considerably reduce the settlement of slab track. However, for the proper reduction of bending moments in a slab track, the pile arrangement should be reasonably taken into account to prevent the stress concentration at pile location.

  • PDF

파일길이비와 암반층의 위치에 따른 마이크로파일 설치방법 (Installation Methods of Micro-piles by the Length Ratio of Pile and the Depth of Rock Layer)

  • 황태현;권오엽
    • 한국지반공학회논문집
    • /
    • 제27권4호
    • /
    • pp.5-20
    • /
    • 2011
  • 본 연구는 토사지반 또는 유한심도 내 암반층이 있는 지반을 대상으로 마이크로파일의 효과적인 설치방법을 제안하고 제안된 설치방법의 적용성을 평가하기 위해 수치해석을 수행하였다. 해석결과, 지반에 설치된 파일이 강체거동을 하는 경우는 파일 선단부와 암반층 위치 따라 파일 보강지반 지지력이 달라지나, 연성거동을 하는 경우는 파일 선단부와 암반층의 위치보다 파일강성과 관련한 파일 설치길이와 파일 근입길이에 따라 지지력이 달라지는 것으로 나타났다.

무리말뚝의 하중분담율에 관한 실험적 연구 (The Experimental Study on Load Sharing Ratio of Group Pile)

  • 권오균;오세붕;김진복;박종운
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.65-70
    • /
    • 2005
  • In this study, the large scale model tests were executed to estimate the Load Sharing Ratio(LSR) of raft in a piled footing under various conditions. The conditions such as the subsoil type, pile length, pile spacing, array type and pile installation method etc. were varied in the pile loading tests about the free-standing group piles and a piled footing. As the results of this study, it was found that there were no differences of the load-settlement curves, along with the pile installation method and subsoil type. The piles supported most of the external load until a yielding load of the piled footing, but the raft supported a considerable load after a yielding load. And it was also found that the LSR didn't be affected by the pile installation method and the subsoil type. As the relative density of sands increased, the LSR decreased. As the pile spacing was wider and the pile length increased, there was a tendancy for the LSR to increase.

  • PDF

지반조건에 따른 마이크로파일 설치방법에 관한 연구 (Installation of Micro-piles Appropriate to Soil Conditions)

  • 황태현;문경련;신용석;권오엽
    • 한국지반공학회논문집
    • /
    • 제28권4호
    • /
    • pp.55-65
    • /
    • 2012
  • 본 연구는 지반조건에 따른 효과적인 마이크로 파일의 설치방법을 제안하기 위해 실트 또는 모래지반에서 모형시험을 수행하였다. 시험결과, 관입 전단파괴가 발생한 실트지반은 압축변위에 저항하도록 마이크로 파일을 엇갈리게 설치(${\theta}$ < $0^{\circ}$)하는 것이 효과적이며, 전면 또는 국부전단파괴가 발생한 모래인 경우 횡 방향 변위에 저항하도록 마이크로 파일을 경사지게 설치(${\theta}$ > $0^{\circ}$ 또는 ${\theta}$ < $0^{\circ}$) 하는 것이 효과적인 것으로 나타났다.