• Title/Summary/Keyword: Pile bearing capacity

Search Result 532, Processing Time 0.022 seconds

Study on Lond Transfer Characteristics of Sand Compaction Piles in Soft Soil Deposits (연약지반의 모래다짐말뚝에 대한 하중전이 연구)

  • Kim Jaekwon;Kim Soo-Il;Jung Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.183-196
    • /
    • 2004
  • Sand Compaction Pile (SCP) is a soft-ground improvement technique used for not only accelerating consolidation but also increasing bearing capacity of soils. In this study, laboratory tests and 3-D finite element analysis were peformed to investigate the characteristics of load transfer in SCP with an emphasis on free-strain behavior of piles with low replacement ratios in the range of 30 to $50\%$. Through these focused tests and numerical analyses, we proposed a simplified method to analyze the load transfer characteristics of SCP in soft ground. Moreover, it was shown that estimated normal stresses in SCP using the proposed method were in a reasonable agreement with actual values.

A Study on the Behavior of Piled Raft Foundation Using Triaxial Compression Apparatus (삼축압축 시험기를 이용한 말뚝 지지 전면 기초 거동 연구)

  • 이영생;홍승현
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.387-395
    • /
    • 2003
  • Model tests were conducted to study the behavior of the piled raft foundation system on sands. Especially in this study, the method using the triaxial compression apparatus was devised and used to apply the confining pressure which is considered difficult in the existing model test on the soil. Steel rods (6mm dia.) and aluminum plates (8mm thickness, 50mm dia.) were used to simulate piles and rafts respectively. Jumunjin standard sands were used to ensure the homogeneity of the sample. After the sample with the piled raft model was laid inside the triaxial cell, the confining pressure was applied and then the compressive force was applied. The increase and/or decrease ratio of the bearing capacity, the load distribution ratio between raft and piles and the effect of settlements decrease depending on the confining pressure, the number of piles and the length of piles were analyzed and the bearing capacity and skin friction of the pile was calculated. By the results of these experiments, the bearing capacity increased and the settlement decreased with this piled raft foundation system. Especially the effect was larger with the increase of the number of piles than with the increase of length of piles. Hereafter, the study of the load transfer mechanism of piles under confining pressure would be made possible using these small model tester like triaxial compression apparatus.

Reliability Estimation of Static Design Methods for Driven Steel Pipe Piles in Korea (국내 항타강관말뚝 설계법의 신뢰성평가)

  • Huh, Jung-Won;Park, Jae-Hyun;Kim, Kyung-Jun;Lee, Ju-Hyung;Kwak, Ki-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.61-73
    • /
    • 2007
  • As a part of Load and Resistance Factor Design(LRFD) code development in Korea, in this paper an intensive reliability analysis was performed to evaluate reliability levels of the two static bearing capacity methods for driven steel pipe piles adopted in Korean Standards for Structure Foundations by the representative reliability methods of First Order Reliability Method(FORM) and Monte Carlo Simulation(MCS). The resistance bias factors for the two static design methods were evaluated by comparing the representative measured bearing capacities with the design values. In determination of the representative bearing capacities of driven steel pipe piles, the 58 data sets of static load tests and soil property tests were collected and analyzed. The static bearing capacity formula and the Meyerhof method using N values were applied to the calculation of the expected design bearing capacity of the piles. The two representative reliability methods(FORM, MCS) based computer programs were developed to facilitate the reliability analysis in this study. Mean Value First Order Second Moment(MVFOSM) approach that provides a simple closed-form solution and two advanced methods of FORM and MCS were used to conduct the intensive reliability analysis using the resistance bias factor statistics obtained, and the results were then compared. In addition, a parametric study was conducted to identify the sensibility and the influence of the random variables on the reliability analysis under consideration.

Dynamic Behavior Characteristics of Group Piles with Relative Density in Sandy Soil (건조 모래지반의 상대밀도에 따른 무리말뚝의 동적거동특성)

  • Heungtae Kim;Hongsig Kang;Kusik Jeong;Kwangkuk Ahn
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.9
    • /
    • pp.33-40
    • /
    • 2023
  • The lateral load which is applied to the pile foundation supporting the superstructure during an earthquake is divided into the inertia force of the upper structure and the kinematic force of the ground. The inertia force and the kinematic force could cause failure to the pile foundation through different complex mechanisms. So it is necessary to predict and evaluate interaction of the ground-pile-structure properly for the seismic design of the foundation. The interaction is affected by the lateral behavior of the structure, the length of the pile, the boundary conditions of the head, and the relative density of the ground. Confining pressure and ground stiffness change accordingly when the relative density changes, and it results that the coefficient of subgrade reaction varies depending on each system. Horizontal bearing behavior and capacity of the pile foundation vary depending on lateral load condition and relative density of the sandy soil. Therefore, the 1g shaking table tests were conducted to confirm the effect of the relative density of the dried sandy soil to dynamic behavior of the group pile supporting the superstructure. The result shows that, as the relative density increases, maximum acceleration of the superstructure and the pile cap increases and decreases respectively, and the slope of the p-y curve of the pile decreases.

The Effects of the Breadth of Foundation and Rock Layer on the Installation Method of Micro-piles (기초 폭 및 암반층의 영향을 고려한 마이크로파일 설치방안에 관한 연구)

  • Hwang, Tae-Hyun;Kim, Ji-Ho;Kwon, Oh-Yeob
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.29-38
    • /
    • 2010
  • Micro-piles have been used to increase the bearing capacity or to restrain settlement of existing shallow foundation. Recently, micro-piles are used to support the shallow foundation, to stabilize the slope and to resist the sliding of retaining wall. Using the micro-piles in geotechnical engineering, some investigators have studied the effective installing method by model test or field test. But most of previous studies are chiefly focused on the micro-piles in sand or clay layer. If a rock layer exists in soil, the installing length of micro-piles may be determined by the depth of rock layer. In this case, the stiffness of pile may be changed by the installing length of pile, and so the installing method has to be altered by the changed stiffness of pile. Model tests have been conducted to study the installation method of micro-pile in soil with rock layer. As a result, when the ratio of length of pile is below 50 ($L/d{\leq}50$), installing of micro-piles in vertical position is effective regardless of the depth of rock layer. If the depth of rock layer is deeper than soil failure zone and the ratio of the length of pile exceeds 50 (L/d>50), installing of the micro-piles in sloped position is effective.

Load-Settlement Behavior of Rock-socketed Drilled Shafts by Bi-directional Pile Load Test (양방향 말뚝선단재하시험에 의한 암반근입 현장타설말뚝의 하중-침하거동 분석)

  • Seol, Hoon-Il;Jeong, Sang-Seom;Han, Keun-Taek;Kim, Jae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.61-70
    • /
    • 2008
  • Load settlement behaviors and load transfer characteristics of rock-socketed pile subjected bi-directional load at pile tip were investigated using bi-directional pile load tests (BD PLT) performed on ten large-diameter drilled shafts at four sites. Based on test results, additional pile-toe displacement ($w_{bs}$) by coupled soil resistance was analyzed, and thus equivalent top loaded load-settlement curve of pile subjected bi-directional load was proposed by taking into account the coupled soil resistance. Through comparisons with field case studies, it is found that for test piles there exists effect of coupled soil resistance, which is represented by wbs, and thus an equivalent curve obtained by existing uncoupled methods can overestimate bearing capacity of piles by BD PLT. On the other hand, the analysis by the proposed method with soil coupling effect has a considerably larger settlement when compared with the results by uncoupled load transfer method and estimates reasonable load-settlement behaviors of test piles. In case of pile socketed in high strength rocks, however, effects of coupled soil resistance can be neglected.

Resistance Factor and Target Reliability Index Calculation of Static Design Methods for Driven Steel Pipe Pile in Gwangyang (광양지역에 적합한 항타강관말뚝의 목표신뢰성지수 및 저항계수 산정)

  • Kim, Hyeon-Tae;Kim, Daehyeon;Lim, Jae-Choon;Park, Kyung-Ho;Lee, Ik-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8128-8139
    • /
    • 2015
  • Recently, the necessity of developing the load and resistance factor design(LRFD) for soft ground improvement method has been raised, since the limit state design is requested as international technical standard for the foundation of structures. In this study, to develop LRFD codes for foundation structures in Korea, target reliability index and resistance factor for static bearing capacity of driven steel pipe piles were calibrated in the framework of reliability theory. The 16 data(in Gwangyang) and the 57 data(Korea Institute of Construction Technology, 2008) sets of static load test and soil property tests conducted in the whole domestic area were collected along with available subsurface investigation results. The resistance bias factors were evaluated for the tow static design methods by comparing the representative measured bearing capacities with the expected design values. Reliability analysis was performed by two types of advanced methods : the First Order Reliability Method (FORM), and the Monte Carlo Simulation (MCS) method using resistance bias factor statistics. As a result, when target reliability indices of the driven pipe pile were selected as 2.0, 2.33, 2.5, resistance factor of two design methods for SPT N at pile tip less than 50 were evaluated as 0.611~0.684, 0.537~0.821 respectively, and STP N at pile tip more than 50 were evaluated as 0.545~0.608, 0.643~0.749 respectively. The result from this research will be useful for developing various foundations and soil structures under LRFD.

The Characteristics of the Set-up Effect of Driven Piles (타입 말뚝의 지지력 증가효과 특성)

  • 조천환
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.235-246
    • /
    • 2003
  • Since the study of Lee et al.(1994) there have been some case studies on the set-up effect of driven piles in Korea country. However, comprehensive examination on the analyses of the set-up effect with various testing data has not been carried out. In particular, the analysis of the influence of soil type and pile shape on the set-up effect has not been reported. It is necessary to analyse the test results of production piles in order to apply the set-up effect of driven piles for the field engineering. In this study some test piling and analyses were performed to give basic information to the piling design as well as the research on the set-up effect in sandy soils. The analyses on the set-up effect were performed with the monitoring data obtained from the high-strain dynamic loading tests. It was shown that the set-up effect of driven piles was not only affected by soil type but also by soil formation history It turned out that the set-up effect in sandy soils was considerable one that should not be ignored in the field, and that the bearing capacity increase of pile is mainly caused by the increase of shaft resistance. It was shown that the set-up effect of closed pile was larger than that of opened pile in clayey soils, while the set-up effect of opened pile was larger than that of closed pile in sandy soils.

Numerical Study on Lateral Pile Behaviors of Piled Gravity Base Foundations for Offshore Wind Turbine (수치해석을 통한 해상풍력 말뚝지지중력식기초의 수평거동 분석)

  • Seo, Ji-Hoon;Choo, Yun Wook;Goo, Jeong-Min;Kim, Youngho;Park, Jae Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.5-19
    • /
    • 2016
  • This paper presents the results from three-dimensional finite element (FE) analysis undertaken to provide insight into the lateral behaviors of piled gravity base foundation (GBF) for offshore wind turbine. The piled GBF was originally developed to support the gravity based foundation in very soft clay soil. A GBF is supported by five piles in a cross arrangement to achieve additional vertical bearing capacity. This study considered four different cases including a) single pile, b) three-by-three group pile (with nine piles), c) cross-arrangement group pile (with five piles), and d) piled GBF. All the cases were installed in homogenous soft clay soil with undrained shear strength of 20 kPa. From the numerical results, p-y curves and thus P-multiplier was back-calculated. For the group pile cases, the group effect decreased with increasing the number of piles. Interestingly, for the piled GBF, the P-multipliers showed a unique trend, compared to the group pile cases. This study concluded that the global lateral behaviour of the piled GBF was influenced strongly by the interaction between GBF and contacted soil surface.

Behaviour Characteristics of Sand Compaction Pile with varying Area Replacement Ratio (모래다집말뚝(SCP)의 치환율 변화에 따른 거동 특성 연구)

  • 박용원;김병일;윤길림;이상익;문대중;권오순
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.117-128
    • /
    • 2000
  • Sand compaction pile(SCP) is one of the ground improvement techniques which is being used for not only accelerating consolidation but also increasing bearing capacity of loose sands or soft clay grounds. In this study, laboratory model test and large-scale direct shear test were performed to investigate the effects of area replacement ratio of composite ground in order to find out the optimum value of area replacement ratio for the ground improvement purpose. Area replacement ratios of 20%, 30%, 40%, 50%, 60% were chosen respectively in the model tests to study the effects of area replacement ratio on variations of stress concentration ratio, settlement and shear strength characteristics of composite ground. In large-scale direct she4ar tests, area replacement ratios of 20%, 30%, 46% were applied to study their effects on shear strength characteristics of composite ground.

  • PDF