• Title/Summary/Keyword: Pile Filling Material

Search Result 15, Processing Time 0.03 seconds

A Comparative Study of Skin Frictional Force through a Laboratory Model Test of Pile Filling Materials with Utilizing Circulating Resources (순환자원 활용 말뚝채움재의 실내모형시험을 통한 주면마찰력 비교 연구)

  • Song, Sang-Hwon;Jeong, Young-Soon;Seo, Se-Gwan
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2021
  • Rural multi-purpose buildings needs to ensure their safety against various disasters. Therefore, a pile foundation, which is a foundation type that can transmit the load of the structure to the bedrock layer, has been designed. The pile foundation method is largely divided into driving piles method and pre-bored pile method. Recently, in order to respond to the Noise and Vibration Control Act and related environmental complaints, construction of pile foundation adopts pre-bored pile method. The bearing capacity of the pre-bored pile method is calculated through a load test in situ. However, a disadvantage stems in that it is difficult to measure the ultimate bearing capacity due to field conditions. Therefore, in this study, the skin frictional force of pre-bored pile was measured through a model test in laboratory for each pile filling material. In result, the pile filling material with using circulating resources shows superior skin frictional force than ordinary portland cement. This study also judged that the result can be applied in place of ordinary Portland cement in the field.

Performance evaluation of cement-zero ECO pile-filling material utilizing recycled resource (순환자원을 활용한 Cement Zero형 ECO 파일채움재의 성능평가)

  • Song, Sang Hwon;Yoon, Seong Jin;Lee, Young Won;Eum, Hyun Mi;Mun, Kyoung Ju;Ko, Hyoung Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.8-10
    • /
    • 2013
  • Inorganic binding material was made by recycled resource and its applicability as pile-filling material was examined. The result was that the material had same liquidity with the liquidity of OPC and high reactivity with site soil. According to dynamic/static loading tests by site test-construction, the inorganic binding material met both design bearing capacity and settlement. Since the inorganic binding material showed same or better performance than OPC, the utilization possibility of the inorganic binding material made of recycled resource as pile-filling material was verified.

  • PDF

Recycling of In-site waste soil material to fill a hollow between PHC pile and Earthen wall

  • Jang, Myung-Houn;Choi, Hee-Bok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.510-517
    • /
    • 2012
  • This study evaluated the recycling potential of in-site waste soil as pile back filling material (PBFM). We performed experiments to check workability, segregation resistance, bond strength, direct shear stress test, and dynamic load test using in-site waste soil in coastal areas. We found that PBFM showed better performance than general cement paste in terms of workability, segregation resistance, and bond strength. On the other hand, the structural performance of PBFM was slightly lower than that of general cement paste due to the skin friction force of pile by Pile Driving Analyzer and direct shear stress. However, because this type of performance degradation in terms of structure can be improved through the use of piles with larger diameter or by changing the type of pile, considering the economics and environment, we considered that recycling of PBFM has sufficient value.

Development of Non-cement Material using Recycled Resources (유동층연소방식 석탄재를 활용한 무시멘트 결합재)

  • Mun, Kyoung-Ju;Lee, Min-Hi;Yoon, Seong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.156-157
    • /
    • 2014
  • Inorganic binding material was made by recycled resource and its applicability as pile-filling material was examined. The result was that the material had same liquidity with the liquidity of OPC and high reactivity with site soil. According to dynamic/static loading tests by site test-construction, the inorganic binding material met both design bearing capacity and settlement. Since the inorganic binding material showed same or better performance than OPC, the utilization possibility of the inorganic binding material made of recycled resource as pile-filling material was verified.

  • PDF

Applicability of Solidified Soil as a Filling Materials in the Drilling of the Bored-precast Pile (매입말뚝 시공시 현장토를 활용한 고화처리 충전재의 현장 적용성 평가)

  • Kim, Khi-Woong;Park, Jeong-Jun;Han, Byung-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.21-29
    • /
    • 2014
  • The use of filling material based on cement paste is inefficient at field construction because it needs a lot of the charging mass. In addition, it has environmental problem according to the large amount of cement use because its strength is also larger than criterion. The excavated soil with stabilizer can be used as the filling materials when the bored pile is constructed. Therefore, this paper describes field application of solidified soil for economical efficiency and environment-friendly. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. As results, the flowability, segregation and bleeding, and bond strength of filling materials was a good performance than that of the existing cement paste. But the skin friction of pile by PDA was slightly decreased than that of the existing cement paste. However, as pile filling materials, and in terms of economics and environment, the applicability of filling material is considered very effective.

Experimental study of file filling meterial with A thickener (증점제를 첨가한 매입말뚝 주면고정액의 실험적 연구)

  • Ko, Hye-Bin;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.21-22
    • /
    • 2020
  • In this study, the pile filling materials of the pile in drilled piling was studied. cement milk is mostly used as the filling materials of bored pile. The use of filling material based on cement milk is inefficient at field construction because it needs a lot of the charging mass. thickening agent was added to the cement milk to perform settlement estimation experiment on a circular cylinder, and as a result of examining the compressive strength of the day, it was found that the settlement estimation was significantly reduced. However, the strength was relatively low, it was confirmed that there was no problem with the regulation because the main surface fixative required relatively low strength.

  • PDF

An Experimental Study on Filling Material for Bored Pile Using High Calcium Ash (고칼슘 연소재를 이용한 매입말뚝의 주면고정액에 관한 실험적 연구)

  • Song, Sang-Hwon;Lim, Yang-Hyun;Seo, Se-Gwan;Cho, Dae-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.13-20
    • /
    • 2017
  • In this study, laboratory tests were performed to evaluate for new filling materials (ZA-Soil) for bored pile that were developed using by high calcium ash. As a result of laboratory test, the uniaxial compression strength of 2 types of ZA-Soil are shown 68.0% and 64.6% compared to ordinary portland cement. And it have a suitable flowability and environmental stability. Also, after 28days, uniaxial compression strength of material mixed with soil and high strength filling material (ZA-Soil) for bored pile is 1.10-1.23 times bigger than material mixed with ordinary portland cement.

Analysis of the Applicability of Ground Stabilizer Using Recycled Resources as Prebored Piles (매입말뚝 주면고정액으로 순환자원을 재활용한 지반안정재의 활용 가능성 분석)

  • Seo, Se-Gwan;Song, Sang-Huwon;Cho, Dae-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.287-294
    • /
    • 2021
  • In this study, tests were performed to analyze the feasibility of using the ground stabilizer from recycled resources such as blast furnace slag powder as filling material of prebored piles. For this, specimens were prepared by applying 70% and 83% of the general water/binder ratio of the filling material of prebored piles. And compression test, model test, and shaking table test were performed to determine the compressive strength, skin friction on the surface between prebored pile and filling material, and seismic performance of ground stabilizer. As a result of the tests, the compressive strength exceeded the relevant domestic standards, and the skin friction was equivalent to that of ordinary portland cement. In addition, the amount of vertical and horizontal displacement caused by earthquakes was found to be much smaller than the domestic standard. Therefore, when considering the test results comprehensively, it is judged that the feasibility of using a ground stabilizer from recycled resources as filling material for prebored pile is sufficient.

Applicability of Solidified Soil as a Filling Materials of Bored Pile (매입말뚝 충전재로서 고화토의 적용성)

  • Kim, Khi-Woong;Chai, Jong-Gil;Han, Byung-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.3
    • /
    • pp.37-42
    • /
    • 2012
  • The cement paste is mostly used as the filling materials of bored pile in Korea. The use of filling material based on cement paste is inefficient at field construction because it needs a lot of the charging mass. In addition, it has environmental problem according to the large amount of cement use because its strength is also larger than criterion. The excavated soil with stabilizer can be used as the filling materials when the bored pile is constructed. Therefore, this paper describes field application of solidified soil for economical efficiency and environment-friendly. The injection capacity of solidified soil is compared with cement paste's based on unconfined compressive strength test and field load test, and the appropriate of test results is evaluated by design criterion. The evaluation result shows that the capacity of excavated soil with stabilizer is similar to cement paste and the solidified soil is able to apply as filling materials of bored pile because it is satisfied with design criterion.

Performance Evaluation of Pile-Filling Material Using High Calcium Ash by Field Loading Test (고칼슘 연소재를 이용한 매입말뚝 주면고정액의 현장 재하시험을 통한 성능평가)

  • Seo, Se-Kwan;Kim, You-Seong;Lim, Yang-Hyun;Jo, Dae-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.17-24
    • /
    • 2018
  • In this study, static load test and dynamic load test were performed to evaluate pile-filling material (ZA-Soil) of soil-cement injected precast pile method which was developed by using the ash of circulating fluidized boiler as a stimulant for alkali activation reaction of blast furnace slag. As a result of the static load test, the allowable bearing capacity of pile was 1,350 kN, which was the same as the result of using ordinary portland cement. And total settlement was 6.97 mm, and net settlement was 1.48 mm. These are similar to the total settlement, 7.825 mm, and net settlement, 2.005 mm of ordinary portland cement. As a result of the dynamic load test and CAPWAP analysis, the skin friction was 375.0 kN, the end bearing capacity was 3,045.9 kN, and the allowable bearing capacity was 1,368.36 kN. These results are similar to the results of using ordinary portland cement as pile-filling material.