• Title/Summary/Keyword: Pile Cutting Work

Search Result 19, Processing Time 0.027 seconds

Problem and Improvement Measure of PHC Pile Construction (PHC파일 시공관리 문제점 및 개선방안)

  • Park, Tae-Kyu;Lee, Jung-Chul;Lee, Chan-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.344-348
    • /
    • 2008
  • During the last few years, the use of Pre-tensioned spun High strength Concrete(PHC) pile has been gradually increased in many construction sites such as super high-rise and large building construction. there is almost no specific code and/or standard described in the specifications to check verticality for Pre-tensioned Spun High Strength Concrete pile installation process. The most commonly used method for the vortical PHC pile installation is a naked-eye measurement or water level measurement conducted by assistant crew in the construction sites. And recent analysis results of the pile cutting work revealed that it frequently makes a lot of cracks which significantly reduce the strength of the pile and is very labor intensive work, thus requiring a large amount of additional time, costs, and efforts. The main objective of the research is to analize problems and to improvement. measure of PHC Pile Construction. The improvement measure present to the main problem with survey and discussion.

  • PDF

Development of All-in-one Attachment Based Steel Pipe Pile Cutting Robot Prototype (강관말뚝 두부정리 및 절단 부위 핸들링 로봇의 프로토타입 개발)

  • Yeom, Dong Jun;Han, Jae Hyun;Jung, Eui Hyun;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.6
    • /
    • pp.115-123
    • /
    • 2018
  • The primary objective of this study is to develop an all-in-one based steel pipe pile cutting robot prototype that improves the conventional steel pipe pile head cutting work in safety, quality, and productivity. For this, the following research works are conducted sequentially; 1)literature review and expert survey, 2)selection of core technology using AHP analysis, 3)deduction of detail design, 4)verification of structural stability, 5)development of full-scale prototype. As a result leveling laser and laser detector(94.46), plasma cutter(96.72), rotary grapple(98.45) are selected as a core technologies. As an outcome, it is analyzed that gripper, cylinder pivot bracket and gripper base are structurally stable. Their maximum stresses are shown as 43.0%, 19.4%, 5.3% compared to their yield strength respectively. The development of full-scale prototype in this study will be utilized for the development of the all-in-one attachment based steel pipe pile cutting robot commercialization model.

Detail Design and Structural Stability Analysis for Automated PHC Pile Cutting Machine (PHC 파일 원커팅 두부정리 자동화 장비의 상세설계 및 구조적 타당성 분석)

  • Yeom, Dong Jun;Hwang, Ji Young;Park, Yesul;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.2
    • /
    • pp.117-125
    • /
    • 2018
  • The primary objectives of this study are to develop a detail design of automated PHC pile head cutting machine and structural stability analysis of detail design that improves the conventional head cutting work in safety, quality, and productivity. For this, the following research works are conducted sequentially; 1)literature review and field study, 2)expert survey and interview, 3)selection of core technology using AHP analysis, 4)deduction of detail design 5) verification of structural stability. As an outcome, it is analyzed that gripper and gripper bearing shaft are structurally stable. Their maximum stresses are shown as 15.93%, 10.58% compared to their yield strength respectively. The results of detail design and structural stability analysis in this study will be utilized for the actual development of the automated PHC pile cutting machine prototype.

A Study of Cutting Method of H-Pile for Explosive Demolition of SRC Structure (철골구조물 발파해체를 위한 H형강 절단방법에 대한 연구)

  • Min Hyung-Dong;Lee Yun-Jae;Song Young-Suk;Kim Hyo-Jin
    • Explosives and Blasting
    • /
    • v.23 no.3
    • /
    • pp.83-89
    • /
    • 2005
  • It follows in deterioration of the steel frame structure and becomes remodeling and removal. The construction work characteristic, economical efficiency and stability environment characteristic are planned and considered hereafter control plan of the steel frame structure which is deteriorated currently to cutting mettled plentifully sued on gas cutting of H beam. However it will not be able to apply from the explosives demolition which is makes a weak instantaneously and then collapses the building at the time. In this study, shape charge was used for cutting of the H-beam. That is the element testing to estimate explosives demolition for steel frame structure. As a result, it is found for single-side rutting method, both-sides rutting methods by H-beam thickness and pre-rutting process. It confirmed an affix method and an ease characteristic by fixing tool. Also, it is shown that air blasting decreased about 8dB(A) in order to reduce air blasting used by sand box. However, it will be required to reduce air blasting little more because explosives demolition will be done in urban site.

Development and Application of Dry Process Caisson for Maintenance of Submerged Barber Structure

  • Lee, Joong-Woo;Lee, Seung-Chul;Oh, Dong-Hoon;Kwak, Seung-Kyu;Lee, Jeong-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.105-114
    • /
    • 2006
  • Together with the trend of enhancement in domestic industrial development and economic progress due to import and export, the demand for construction of the roads, bridges, especially port facilities, and several coastal protection and ocean structures is increasing rapidly. MOMAF of Korean Government is driving construction of 9 new ports and renovation of the existing fishery ports. Among these structures most of bridge base, wharves, dolphins, quays, and jetties are being newly built of steel or concrete pile. As the base, supporting bulkheads, and piles are underwater after construction, it is difficult to figure out the status of structures and not enough to get maintenance and strengthen the structures. Every year, moreover, these works suck the government budget due to higher incomplete maintenance expense for protection from corrosions of structures and increased underwater construction period. for the purpose of cutting down the government budget, it is necessary to extend the life cycle of the existing structures. We developed a new method for maintenance of submerged structures near the waterline by allowing dry work environment with the floating caisson. The method shows easy to move around the working area and handle. It also showed not only a significant reduction of maintenance expenses and time for anti-corrosion work but also better protection. This will be a milestone to reduce the maintenance and construction expenses for the shore and water structures.

  • PDF

A Study on the Risk Assessment System for Human Factors (휴먼에러를 중심으로 한 위험요인 도출 방법론에 관한 연구)

  • Jung, Sang Kyo;Chang, Seong Rok
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.79-84
    • /
    • 2014
  • Human error is one of the major contributors to the accidents. A lot of risk assessment techniques have been developed for prevention of accidents. Nevertheless, most of them were interested in physical factors, because quantitative evaluation of human errors was difficult quantitatively. According to lack of risk assessment techniques about human errors, most of industrial risk assessment for human errors were based on data of accident analysis. In order to develop an effective countermeasure to reduce the risk caused by human errors, a systematic analysis is needed. Generally, risk assessment system is composed of 5 step(classification of work activity, identification of hazards, risk estimation, evaluation and improvement). This study aimed to develop a risk identification technique for human errors that could mainly be applied to industrial fields. In this study, Ergo-HAZOP and Comprehensive Human Error Analysis Technique were used for developing the risk identification technique. In the proposed risk identification technique, Ergo-HAZOP was used for broad-brush risk identification. More critical risks were analysed by Comprehensive Human Error Analysis Technique. In order to verify applicability, the proposed risk identification technique was applied to the work of pile head cutting. As a consequence, extensive hazards were identified and fundamental countermeasures were established. It is expected that much attention would be paid to prevent accidents by human error in industrial fields since safety personnel can easily fint out hazards of human factors if utilizing the proposed risk identification technique.

Development of Dry Process Caisson Method for Maintenance of Submerged Harbor Structure (수중 항만구조물의 유지보수를 위한 건식 케이슨 공법 개발)

  • Lee Joong-Woo;Oh Dong-Hoon;Kwak Seung-Kyu;Kim Sung-Tae
    • Journal of Navigation and Port Research
    • /
    • v.30 no.6 s.112
    • /
    • pp.447-455
    • /
    • 2006
  • Together with the trend of enhancement in domestic industrial development and economic progress due to import and export, the demand for construction of the roads, bridges, especially port facilities, and several coastal protection and ocean structures is increasing rapidly. MOMAF of Korean Government is driving construction cf 9 new ports and renovation cf the existing fishery ports. Among these structures most of bridge base, wharves, dolphins, quays, and jetties are being newly built cf steel or concrete pile. As the base, supporting bulkheads, and piles are underwater after construction, it is difficult to figure out the status of structures and not enough to get maintenance and strengthen the structures. Every year, moreover, these works suck the government budget due to higher incomplete maintenance expense for protection from corrosions cf structures and increased underwater construction period. For the purpose cf cutting down the expense cf government budget, it is necessary to extend the life cycle of the existing structures. Therefore, we developed a new method for maintenance of submerged structures near the waterline by allowing dry work environment with the floating caisson. The method shows easy to move around the working area and handle. It also showed not only a significant reduction of maintenance expenses and time for anti-corrosion work but also better protection This will be a milestone to reduce the maintenance and construction expenses for the shore and water structures.

Development of Dry Process Caisson Method for Maintenance of Submerged Harbor Structure (수중 항만구조물의 유지보수를 위한 건식 케이슨 공법 개발)

  • Lee Joong-Woo;Oh Dong-Hoon;Kwak Seung-Kyu;Kim Sung-Tae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.163-170
    • /
    • 2006
  • Together with the trend of enhancement in domestic industrial development and economic progress due to import and export, the demand for construction of the roads, bridges, especially port facilities, and several coastal protection and ocean structures is increasing rapidly. MOMAF of Korean Government is driving construction of 9 new ports and renovation of the existing fishery ports. Among these structures most of bridge base, wharves, dolphins, quays, and jetties are being newly built of steel or concrete pile. As the base, supporting bulkheads, and piles are underwater after construction, it is difficult to figure out the status of structures and not enough to get maintenance and strengthen the structures. Every year, moreover, these works suck the government budget due to higher incomplete maintenance expense for protection from corrosions of structures and increased underwater construction period. For the purpose of cutting down the expense of government budget, it is necessary to extend the life cycle of the existing structures. Therefore, we developed a new method for maintenance of submerged structures near the waterline by allowing dry work environment with the floating caisson. The method shows easy to move around the working area and handle. It also showed not only a significant reduction maintenance expenses and time for anti-corrosion work but also better protection. This will be a milestone to reduce the maintenance and construction expenses for the shore and water structures.

  • PDF

Context-Aware Steel-Plate Piling Process System For Improving the Ship-Building Process (선박 건조공정 개선을 위한 상황인지 컴퓨팅 기반의 강재적치처리시스템)

  • Kang, Dong-Hoon;Ha, Chang-Wan;Kim, Je-Wook;Oh, Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.6
    • /
    • pp.165-178
    • /
    • 2011
  • A gigantic ship is constructed by assembling various types of ship blocks, each block being made by cutting and piecing the steel-plates together. The steel-plate piling process as the initial stage of ship construction sorts and manages the steel-plates according to the ship blocks that the steel-plates are used to make. The steel-plate piling process poses some problems such as process delay due to piling errors, safety vulnerability due to the handling of extra heavy-weight objects, and the uncertainty of work plan due to lack of information management in the pile spaces. We constructed a steel-plate piling process system based on the context-aware computing to resolve such problems. We built simulation system that can simulate the piling process and then established a smart space within the system by using tags, sensors and a real-time location system in order to collect context information. Workers receive an appropriate or intelligent service from the system.