• Title/Summary/Keyword: Pig manure wastewater

Search Result 18, Processing Time 0.027 seconds

Performance of carbon nanotube-coated steel slag for high concentrations of phosphorus from pig manure

  • Kang, Kyeong Hwan;Kim, Junghyeon;Jeon, Hyeonjin;Kim, Kyoungwoo;Byun, Imgyu
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.59-68
    • /
    • 2020
  • The study objective was to evaluate the enhanced removal of high concentrations of phosphorus from synthetic wastewater (solely phosphorus-containing) and real wastewater (pig manure) by using carbon nanotube (CNT)-coated steel slag. Generally, phosphorus removal by steel slag is attributed to Ca2+ eluted from the slag. However, in this study, CNT was used to control the excess release of Ca2+ from steel slag and increase the phosphorus removal. The phosphorus removal rate by the uncoated steel slag was lower than that of the CNT-coated steel slag, even though the Ca2+ concentrations were higher in the solution containing the uncoated steel slag. Therefore, the phosphorus removal could be attributed to both precipitation with Ca2+ eluted from steel slag in aqueous solution and adsorption onto the surface of the CNT-coated steel slag. Furthermore, the protons released from the CNT surface by exchanging with divalent cations acted to reduce the pH increase of the solution, which is attributed to the OH- eluted from the steel slag. The adsorption isotherm and kinetics of the CNT-coated steel slags followed the Freundlich isotherm and pseudo-second-order model, respectively. The maximum adsorption capacity of the uncoated and CNT-coated steel slags was 6.127 and 9.268 mg P g-1 slag, respectively. In addition, phosphorus from pig manure was more effectively removed by the CNT-coated steel slag than by the uncoated slag. Over 24 hours, the PO4-P removal in pig manure was 12.3% higher by the CNT-coated slag. This CNT-coated steel slag can be used to remove both phosphorus and metals and has potential applications in high phosphorus-containing wastewater like pig manure.

Evaluation of Autoheated Thermophilic Aerobic Digestion Process for the Treatment of Pig Manure Wastewater (돈사폐수의 고온 호기성 소화공정 적용 타당성 평가)

  • Chung, Yoon-Jin;Cho, Jong-Bok;Lee, Jin-Yong;Lee, Jong-Hyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.103-114
    • /
    • 1995
  • Since autoheated thermophilic aerobic digestion (ATAD) process has various advantages for the treatment of high-strength organic wastewater, active research and field application has been applied in U.S.A. and Canada, recently and the interest in ATAD process has been elevated for treating high-strength organic wastewater efficiently in Korea. Therefore, various experiments were carried out to evaluate the feasibility of ATAD process for the treatment of pig manure wastewater. The results of this study showed possibility to reuse pig manure wastewater as wet fodder or liquid compost, since ATAD process led excellent stabilization on the basis of odor and putrefaction. However. digested sludge can not be provided as wet fodder to most of hog farms without changing dry feeder system into wet system and as liquid compost to hog farms not having their own grass land. Since the results showed that the increase of temperature in reactor was resulted not from energy by biological activity. but from mechanical mixing energy. the reactor investigated in this study was against the principle of ATAD process. Therefore. if pig manure wastewater treated by ATAD can not be utilized as wet fodder. it is not economical to adopt ATAD process only for the treatment of wastewater.

  • PDF

Status of Anaerobic Digestion Facility for Pig-slurry in Korea (국내 가축분뇨 혐기소화시설 현황 및 운영실태 분석)

  • Jeong, Kwang-Hwa;Kim, Jung-Gon;Han, Duk-Woo;Kwag, Jung-Hun
    • Journal of Animal Environmental Science
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 2014
  • This study was conducted to survey and inspect the currently operating anaerobic digestion facilities for animal manure. Recently, the number of anaerobic digestion facility for livestock manure is on the rise thanks to growing interest in developing alternative energy. A anaerobic digestion system has been constructed in large scale farms or animal manure public resource center. Currently, most animal manure anaerobic digestion facilities in operation are producing biogas from the pig slurry which contains 97% water. Methane gas can be used to operate a engine generator which then produces electricity. Anaerobic digestate, a by-product of digestion, is mostly utilized as a liquid fertilizer after curing processing. Only in a few cases, it can be discharged after wastewater treatment process. The problem of anaerobic digestate treatment is the imbalance of C/N ratio. The content of N was too high to keep it into normal process.

Improvement in the Operating Conditions of the Rotary Mixing Compost Plants (로터리 교반식 퇴비화 시설의 운전 조건 개선)

  • Kim, Eun-Kyoung;Lee, Taek-Soon;Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.3
    • /
    • pp.355-361
    • /
    • 1996
  • The Purpose of this study was to investigate the effect of the Change in the operating conditions on rotary turning compost plants. The major parameters investigated were moisture content and mixing of the sawdust and pig farm wastewater. Pig farm scale composting plants with mixing rotary were used in this study. Wastes used for the study were sawdust, pig manure, urine and wastewater. When the moisture content was 75%, the compost product obtained from the plants had better physical characteristics than that obtained from the plants with moisture contents of 70%, 80% and 85%.(two a day mixing). When the turning was twice a day, the compost product obtained from the plants had better characteristics than that obtained from non-mixing.(moisture content 75%). C/N ratio, pH value and coliform bacterial population were stable in the compost.

  • PDF

Efficiency of methane production from pig manure slurry using anaerobic digestor combined with compost filtration bed (퇴비단 여과상이 부착된 혐기소화조를 이용한 돈분뇨 슬러리 메탄생산 효율분석)

  • Jeong, Kwang-Hwa;Khan, Modabber Ahmed;Choi, Dong-Yoon;Lee, Dong-Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.1
    • /
    • pp.53-61
    • /
    • 2013
  • The characteristics of methane production from pig manure slurry was investigated using anaerobic digestor combined with compost filtration bed. In this study, raw pig manure slurry was digested in mesophilic rectangular digester (effective volume $250m^3$) for 25 days and anaerobic digestion wastewater was filtered through compost filtration bed, which is composed of double layer, sawdust and chaff. The characteristics of anaerobic digestion wastewater were BOD 1,800 mg/L, COD 3,500 mg/L, SS 11,800 mg/L, T-N 1,200 mg/L and T-P 350 mg/L. After the filtration process, the contents of BOD, COD, SS, T-N and T-P of the anaerobic digestion wastewater were reduced by 97%, 62%, 89%, 39% and 57%, respectively. The concentrations of N, $P_2O_5$, and $K_2O$ of the leachate were 1,024, 111 and 407 mg/L, respectively. However, there was no odor emitted from the leachate.

Biochemical Methane Potential of Animal Manure and Cultivated Forage Crops at the Reclaimed Tideland (가축분뇨와 간척지 사료작물의 메탄발생량)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.79-82
    • /
    • 2008
  • Anaerobic biodegradability(AB), which can be determined with the ultimate methane yield by the decomposition of organic materials, is one of the important parameters for the design and the operation of anaerobic digestion plant. In this study, Biochemical Methane Potential(BMP) test has been carried out to evaluate the methane yield of animal manures, such as pig and cattle slurries, and different forage crops cultivated at the reclaimed tideland, such as maize, sorghum, barley, rye, Italian ryegrass(IRG), rape, rush and sludge produced from slaughterhouse wastewater treatment plant(SWTP). In the ultimate methane yield of animal manure, that of pig slurry(no used a EM) was 407 $mlCH_4/gVS_{fed}$ higher than 242 $mlCH_4/gVS_{fed}$ of cattle slurry. The ultimate methane yield of spike-crop rye was 442.36 $mlCH_4/gVS_{fed}$ the highest among different forage crops, the other showed the value above a methane yield of 300 $mlCH_4/gVS_{fed}$. The forage crop could be used as a good substrate to improve the methane production in anaerobic co-digestion together with animal manure.

  • PDF

Estimation of Unit Loads Generation for Swine Wastewater by Cage Test (Cage Test를 통한 양돈폐수 발생원단위 설정)

  • Kim, Yong Seok;Park, Jae Hong;Park, Ji Hyoung;Park, Bae Kyung;Oa, Seong Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.235-240
    • /
    • 2015
  • To evaluate the unit load generation and discharge, pig cage test was conducted. Feed intake, drink amount, and urine generation increased growth stage (heavy weight) of the pig more great. However, the sum of the urine and manure did not show a significant difference in the growth stages of pigs. Because of the limit of the experiment, e.g., research period, high pigpen temperature, breed-related stress and etc., it could not be derived the results of the four seasons. Therefore, in order to generalize the results, the feed intakes were calibrated using a NRC (National Research and nutritional requirements of pigs from the Commission) standards. The finalized unit load generation and generation amounts of manure and urine were estimated at BOD 104.1 g/head/d, T-N 21.2 g/head/d, T-P 4.9 g/head/d, manure 0.96 L/d, urine 1.66 L/d with consideration of revised feed intake. Compare to the former research results of MOE (Ministry of Environment, 1999) and NIAS (National Institute of Animal Science, 2008), the generation amounts of manure and urine were similar to the NIAS's values. In case of unit load generation, BOD and T-N were almost similar in all of them. However, the T-P unit load generation of MOE was more difference, e.g., 2.5 times high, compare to this study.

Effect of Ozone Concentration on AOP Efficiency of Secondary Effluent from Pig Slurry Purification System (오존 접촉농도가 양돈슬러리 2차 처리수의 고도처리 효율에 미치는 영향)

  • Jeong, K.H.;Jeon, S.K.;Ryu, S.H.;Kim, J.H.;Kwag, J.H.;Ann, H.K.;Jeong, M.S.;Yoo, Y.H.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.3
    • /
    • pp.181-188
    • /
    • 2011
  • With an increasing livestock population, animal manure production has been steadily increasing in Korea. This trend has forced farmers to spend more money for animal manure treatment in their farm. Therefore, research utilizing animal manure as a renewable resources has become increasingly important. The purpose of this study was to develop a stable advanced wastewater treatment system can be applied to conventional animal wastewater treatment processes and evaluate its contribution to reduce effluent discharge volume by recycling as flushing water. AOP (advanced oxidation process) process improved wastewater treatment efficiency in terms of color, suspended solids (SS) and chemical oxygen demand (COD). Due to the addition of Hydrogen peroxide ($H_2O_2$), pathogens, Salmonella and E. coli, reduction was accomplished. To enhance ozone treatment effect, three levels of ozone test on secondary effluent of pig slurry purification system were conducted. At the level of 5 g/hr, 6.7 g/hr and 8.4 g/hr color of secondary effluent of pig slurry purification system were decreased from 2,433 to 2,199, 2,433 to 1,980 and 2,433 to 243, respectively.

Influence of a chemical additive on the reduction of highly concentrated ammonium nitrogen(NH4+-N) in pig wastewater (양돈 폐수로부터 고농도 암모니아성 질소의 감소를 위한 화학적 첨가제의 영향)

  • Su Ho Bae;Eun Kim;Keon Sang Ryoo
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.267-274
    • /
    • 2022
  • Excess nitrogen (N) flowing from livestock manure to water systems poses a serious threat to the natural environment. Thus, livestock wastewater management has recently drawn attention to this related field. This study first attempted to obtain the optimal conditions for the further volatilization of NH3 gas generated from pig wastewater by adjusting the amount of injected magnesia (MgO). At 0.8 wt.% of MgO (by pig wastewater weight), the volatility rate of NH3 increased to 75.5% after a day of aeration compared to untreated samples (pig wastewater itself). This phenomenon was attributed to increases in the pH of pig wastewater as MgO dissolved in it, increasing the volatilization efficiency of NH3. The initial pH of pig wastewater was 8.4, and the pH was 9.2 when MgO was added up to 0.8 wt.%. Second, the residual ammonia nitrogen (NH4+-N) in pig wastewater was removed by precipitation in the form of struvite (NH4MgPO4·6H2O) by adjusting the pH after adding MgO and H3PO4. Struvite produced in the pig wastewater was identified by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analysis. White precipitates began to form at pH 6, and the higher the pH, the lower the concentration of NH4+-N in pig wastewater. Of the total 86.1% of NH4+-N removed, 62.4% was achieved at pH 6, which was the highest removal rate. Furthermore, how struvite changes with pH was investigated. Under conditions of pH 11 or higher, the synthesized struvite was completely decomposed. The yield of struvite in the precipitate was determined to be between 68% and 84% through a variety of analyses.

Biochemical Methane Potential and Biodegradability of Animal Manure and Cultivated Forage Crops at the Reclaimed Tideland (가축분뇨와 간척지 사료작물의 메탄발생량과 생분해도)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.56-64
    • /
    • 2008
  • Anaerobic biodegradability (AB), which can be determined with the ultimate methane yield by the decomposition of organic materials, is one of the important parameters for the design and the operation of anaerobic digestion plant. In this study, Biochemical methane potential (BMP) test has been carried out to evaluate the methane yields of animal manures such as pig and cattle slurries, and different forage crops cultivated at the reclaimed tideland such as maize, sorghum, barley, rye, Italian ryegrass (IRG), rape, rush, and waste sludge produced from slaughterhouse wastewater treatment plant (SSWTP). In the ultimate methane yield and biodegradability of animal manure, those of pig slurry were 345 $mlCH_4/gVS_{fed}$ and 44.7% higher than 247 $mlCH_4/gVS_{fed}$ and 46.4% of cattle slurry (Cat. 2). The ultimate methane yield and biodegradability of spike-crop rye (Rye 1) were 442.36 $mlCH_4/gVS_{fed}$ and 86.5% the highest among different forage crops, those of the other forage crops ranged from 306.6 to 379 $mlCH_4/gVS_{fed}$ of methane yield with the AB having the range of about 60 to 77%. Therefore the forage crops could be used as a good substrate to increase the methane production and to improve the biodegradability in anaerobic co-digestion together with animal manure.

  • PDF