• 제목/요약/키워드: Pig embryo

검색결과 253건 처리시간 0.025초

Donor Cell Source (Miniature Pig and Landrace Pig) Affects Apoptosis and Imprinting Gene Expression in Porcine Nuclear Transfer Embryos

  • Park, Mi-Rung;Hwang, In-Sun;Shim, Joo-Hyun;Moon, Hyo-Jin;Kim, Dong-Hoon;Ko, Yeoung-Gyu;Seong, Hwan-Hoo;Im, Gi-Sun
    • 한국수정란이식학회지
    • /
    • 제23권2호
    • /
    • pp.101-108
    • /
    • 2008
  • This study investigated the developmental ability and gene expression of somatic cell nuclear transfer embryos using ear skin fibroblast cells derived from miniature pig. When miniature pig (m) and landrace pig (p) were used as donor cells, there were no differences in cleavage (79.2 vs. 78.2%) and blastocyst rates (27.4 vs. 29.7%). However, mNT blastocysts showed significantly higher apoptosis rate than that of pNT blastocysts (6.1 vs. 1.7%) (p<0.05). The number of nuclei in pNT blastosysts was significantly higher than that of mNT (35.8 vs. 29.3) (p<0.05). Blastocysts were analyzed using Realtime RT-PCR to determine the expression of Bax-${\alpha}$, Bcl-xl, H19, IGF2, IGF2r and Xist. Bax-${\alpha}$ was higher in mNT blastocyst than pNT blastocyst (p<0.05). There was no difference in Bcl-xl between two NT groups. Bax-${\alpha}$/Bcl-xl was, however, significantly higher in mNT blastocyst compared to pNT. The expression of imprinting genes were aberrant in blastocysts derived from NT compared to in vivo blastocysts. H19 and IGF2r were significantly lower in mNT blastocysts (p<0.05). The expression of IGF2 and Xist was similar in two NT groups. However, imprinting genes were expressed aberrantly in mNT compared to pNT blastocysts. The present results suggest that the NT between donor cells derived from miniature pig and recipient oocytes derived from crossbred pig might affect reprogramming of donor cell, resulting in high apoptosis and aberrant expression patterns of imprinting genes.

A Case of Porcine Infertility Associated with Oviductal Obstruction

  • Koo, Ok-Jae;Kang, Jung-Taek;Kwon, Dae-Kee;Park, Hee-Jung;Park, Sol-Ji;Kim, Su-Jin;Moon, Joon-Ho;Kim, Hyun-Il;Jang, Goo;Lee, Byeong-Chun
    • 한국수정란이식학회지
    • /
    • 제26권1호
    • /
    • pp.53-56
    • /
    • 2011
  • Infertility of the pig is directly affects on economic loss and failure of the embryo transfer. In the present case report, we show one rare case of porcine infertility resulted from oviductal obstruction. A gilt showing normal heat behaviors was selected as a recipient of embryo transfer. During the laparotomy surgery, abnormality of the reproductive tract was founded. Several large sized cyst-like structures were founded on infundibulum and body of uterus. Severe enlargement of oviduct represents that obstruction of the oviduct. Sign of fibrosis on the surface of uterus and other internal organs revealed that the obstruction was come arise from prior peritonitis. Mild neutropenia and elevated number of monocytes, eosinophils and platelets in blood smear represent that the peritonitis might be due to chronic parasitic infection. Ovarian function was seems to be normal due to blood progesterone concentration was higher than basal level. The pig was culled because she cannot be recovered by surgical or hormonal treatment.

Effect of Macromolecules in Maturation Medium on Oocyte Maturation and Embryonic Development after Parthenogenesis and Nuclear Transfer in Pigs

  • You, Jin-Young;Kim, Jin-Young;Lee, Eun-Song
    • 한국수정란이식학회지
    • /
    • 제24권2호
    • /
    • pp.97-104
    • /
    • 2009
  • The objective of this study was to examine the effect of macromolecule in a maturation medium on nuclear maturation, intracellular glutathione (GSH) level of oocytes, and embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) in pigs. Immature pig oocytes were cultured in maturation medium that was supplemented with each polyvinyl alcohol (PVA), pig follicular fluid (pFF) or newborn calf serum (NBCS) during the first 22 h and the second 22 h. Oocyte maturation was not influenced by the source of macromolecules during in vitro maturation (IVM). Embryo cleavage and cell number in blastocyst after PA was altered by the source of macromolecule but no difference was observed in blastocyst formation among treatments. Oocytes matured in PVA-PVA medium showed lower rates of oocyte-cell fusion (70.4% vs. 77${\sim}$82%) and embryo cleavage (75% vs. 86${\sim}$90%) after SCNT than those matured in other media but blastocyst formation was not altered (13${\sim}$27%) by different macromolecules. pFF added to IVM medium significantly increased the intracellular GSH level of oocytes compared to PVA and NBCS, particularly when pFF was supplemented during the first 22 h of IVM. Our results demonstrate that source of macromolecule in IVM medium influences developmental competence of oocytes after PA and SCNT, and that pFF supplementation during the early period (first 22 h) of IVM increases intracellular GSH level of oocytes.

Recent Development in Embryo Technology in Pigs - Review -

  • Niwa, K.;Funahashi, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권6호
    • /
    • pp.966-975
    • /
    • 1999
  • Technologies on preimplantation porcine embryos have been developed quickly and significantly. Successful development of systems for culture of porcine zygotes to the blastocyst stage has made it possible to utilize follicular oocytes for in vitro production of embryos and thus stimulated research on various embryo technologies. Recent technological development of embryo cryopreservation, separation of X- and Y-bearing spermatozoa and non-surgical embryo transfer has also made it easy to utilize in vivo- and in vitro-produced embryos for artificial manipulation to produce clones and transgenic pigs. Further progress in overcoming various problems associated with each embryo technology will result in acceptable efficiency to utilize porcine embryos with a high or increased quality. Combining these technologies will accelerate further expansion of the swine industry not only for meat production but also for the production of therapeutic recombinant proteins and xonografts.

Study on Embryo Transfer System for Production of Transgenic Pigs

  • Na, Seungwon;Lee, Euncheol;Kim, Ghangyong;Min, Kyuhong;Yu, Youngkwang;Roy, Pantu Kumar;Fang, Xun;Hassan, Bahia Mohamed Salih;Yoon, Kiyoung;Shin, Sangtae;Cho, Jongki
    • 한국수정란이식학회지
    • /
    • 제30권4호
    • /
    • pp.345-350
    • /
    • 2015
  • In the last 10 years, porcine somatic cell nuclear transfer to generate transgenic pig has been performed tremendous development with introduction and knockout of many genes. However, efficiency of porcine somatic cell nuclear transfer is still low and embryo transfer (ET) is one of important step for production efficiency. In porcine ET for production of transgenic cloned pig, we can consider many of points to increase production rates. In respect of seasonality and weather, porcine ET usually is not performed in summer and winter. Cloned transgenic embryos must be transferred into reproductive tracts of recipients where embryos are located after natural fertilization with similar estrous cycle. If cloned embryos with 2~4 cell stage are transferred, they must be transferred into oviducts in periovulatory stage. Number and deposition sites of transferred cloned embryos are important. And we must compare the methods of ET between surgical and non-surgical ones in respect of production efficiency. Sow recipients after natural estrus is most preferred recipients however its cost is must be considered. Here we will review many of current studies about porcine embryo transfer to increase production efficiency of transgenic pigs and strategies for further studies.

Embryo Aggregation Promotes Derivation Efficiency of Outgrowths from Porcine Blastocysts

  • Lee, Sang-Goo;Park, Jin-Kyu;Choi, Kwang-Hwan;Son, Hye-Young;Lee, Chang-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권11호
    • /
    • pp.1565-1572
    • /
    • 2015
  • Porcine embryonic stem cells (pESCs) have become an advantageous experimental tool for developing therapeutic applications and producing transgenic animals. However, despite numerous reports of putative pESC lines, deriving validated pESC lines from embryos produced in vitro remains difficult. Here, we report that embryo aggregation was useful for deriving pESCs from in vitro-produced embryos. Blastocysts derived from embryo aggregation formed a larger number of colonies and maintained cell culture stability. Our derived cell lines demonstrated expression of pluripotent markers (alkaline phosphatase, Oct4, Sox2, and Nanog), an ability to form embryoid bodies, and the capacity to differentiate into the three germ layers. A cytogenetic analysis of these cells revealed that all lines derived from aggregated blastocysts had normal female and male karyotypes. These results demonstrate that embryo aggregation could be a useful technique to improve the efficiency of deriving ESCs from in vitro-fertilized pig embryos, studying early development, and deriving pluripotent ESCs in vitro in other mammals.