• Title/Summary/Keyword: Pig Breeds

Search Result 179, Processing Time 0.028 seconds

The fecal microbiota composition of boar Duroc, Yorkshire, Landrace and Hampshire pigs

  • Xiao, Yingping;Li, Kaifeng;Xiang, Yun;Zhou, Weidong;Gui, Guohong;Yang, Hua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1456-1463
    • /
    • 2017
  • Objective: To investigate the effect of host genetics on gut microbial diversity, we performed a structural survey of the fecal microbiota of four purebred boar pig lines: Duroc, Landrace, Hampshire, and Yorkshire. Methods: The V3-V4 regions of the 16S rRNA genes were amplified and sequenced. Results: A total of 783 operational taxonomic units were shared by all breeds, whereas others were breed-specific. Firmicutes and Bacteroidetes dominated the majority of the fecal microbiota; Clostridia, Bacilli, and Bacteroidia were the major classes. Nine predominant genera were observed in all breeds and eight of them can produce short-chain fatty acids. Some bacteria can secrete cellulase to aid fiber digestion by the host. Butyric, isobutyric, valeric, and isovaleric acid levels were highest in Landrace pigs, whereas acetic and propionic acid were highest in the Hampshire breed. Heatmap was used to revealed breed-specific bacteria. Principal coordinate analysis of fecal bacteria revealed that the Landrace and Yorkshire breeds had high similarity and were clearly separated from the Duroc and Hampshire breeds. Conclusion: Overall, this study is the first time to compare the fecal microbiomes of four breeds of boar pig by high-throughput sequencing and to use Spearman's rank correlation to analyze competition and cooperation among the core bacteria.

Comparison of Pork Quality Characteristics of Different Parts from Domesticated Pig Species (국내에 보급되어 이용 가능한 돼지 품종의 부위별 육질특성 탐색)

  • Kang, Hyun-Sung;Seo, Kang-Seok;Kim, Kyung-Tai;Nam, Ki-Chang
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.921-927
    • /
    • 2011
  • To compare pork quality from different pig species domesticated for Korean consumers, the meat quality characteristics of 5 different pure breeds of Landrace (L), Yorkshire (Y), Duroc (D), Berkshire (B), and Chester White (C) were determined from the 3 parts of loins, butts, and bellies. The fat content of loins was higher in breed D than in the other breeds, while that of butts and bellies was higher in breed B. The CIE color $a^*$ and $b^*$ values of the loins and butts from breed C were lower than those of the other breeds, but the color values of the belly part did not significantly differ by breed due to the high fat accumulation. The drip loss and cooking loss significantly differed depending on meat parts: breeds D and B were inferior in loins and butts but superior in bellies. The lipid oxidation of raw meat did not increase during the 7 d storage. The cooked butts of breed C had less thiobarbituric acid-reactive substances values than those of the other breeds at 7 d, and the cooked bellies of breeds D and B had less. Moreover, there were only minimal differences in fatty acid compositions by pork breed and part. From the view points of the physicochemical and organoleptic analysis of pork from different pig species, it is estimated that breed D had better meat quality in the loin part and breed B had better meat quality in the butt. The belly meat quality of breed C showed the least value. Although the meat quality of pig species differed depending on the parts and it was difficult to compare the meat quality of a part using the meat quality parameters of another part, the result of this study could provide basic information that can be used to improve the meat quality of different parts of pig species.

Genetic Variation of H-FABP Gene and Association with Intramuscular Fat Content in Laiwu Black and Four Western Pig Breeds

  • Zeng, Y.Q.;Wang, G.L.;Wang, C.F.;Wei, S.D.;Wu, Y.;Wang, L.Y.;Wang, H.;Yang, H.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.13-16
    • /
    • 2005
  • This study was performed to detect genetic variation of the heart fatty acid-binding protein (H-FABP) gene by PCRRFLPs approach and its association with intramuscular fat (IMF) content. Data from 223 individuals, including one Chinese native pig breed and four western pig breeds, were analyzed. The results showed that for the H-FABP gene, there was one polymorphic HinfI site in the 5'-upstream region, whereas there were one HaeIII and one HinfI (marked as $HinfI^*$) polymorphic site in the second intron, respectively. The three PCR-RFLPs were present in all breeds tested. The allele frequencies, however, revealed significant differences between them (p<0.05). Furthermore, the allele frequency distribution of HinfI in the Laiwu Black and that of $HinfI^*$ in the Hampshire breed were at disequilibrium, which might be the result of selective breeding. Results also indicated that for HinfI, HaeIII and $HinfI^*$ HFABP RFLP, significant (p<0.05) contrasts of 0.78%, -0.69% and 0.72% were detected in the least square means of IMF content between the homozygous genotype HH and hh, DD and dd, BB and bb classes, respectively. It implied that the HHddBB genotype had the highest IMF content in this experimental population and these H-FABP RFLPs could serve, to some extent, as genetic markers for use in improvement of IMF content.

Gene Expression Profiling in Hepatic Tissue of two Pig Breeds

  • Jang, Gul-Won;Lee, Kyung-Tai;Park, Jong Eun;Kim, Heebal;Kim, Tae-Hun;Choi, Bong-Hwan;Kim, Myung Jick;Lim, Dajeong
    • Journal of Animal Science and Technology
    • /
    • v.54 no.6
    • /
    • pp.383-394
    • /
    • 2012
  • Microarray analyses provide information that can be used to enhance the efficiency of livestock production. For example, microarray profiling can potentially identify the biological processes responsible for the phenotypic characteristics of porcine liver. We performed transcriptome profiling to identify differentially expressed genes (DEGs) in liver of pigs from two breeds, the Korean native pigs (KNP) and Yorkshire pigs. We correctly identified expected DEGs using factor analysis for robust microarray summarization (FARMS) and robust multi-array average (RMA) strategies. We identified 366 DEGs in liver (p<0.05, fold-change>2). We also performed functional analyses, including gene ontology and molecular network analyses. In addition, we identified the regulatory relationship between DEGs and their transcription factors using in silico and qRT-PCR analysis. Our findings suggest that DEGs and their transcription factors may have a potential role in adipogenesis and/or lipid deposition in liver tissues of two pig breeds.

Transcriptional Alteration of p53 Related Processes As a Key Factor for Skeletal Muscle Characteristics in Sus scrofa

  • Kim, Seung-Soo;Kim, Jung-Rok;Moon, Jin-Kyoo;Choi, Bong-Hwan;Kim, Tae-Hun;Kim, Kwan-Suk;Kim, Jong-Joo;Lee, Cheol-Koo
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.565-573
    • /
    • 2009
  • The pig could be a useful model to characterize molecular aspects determining several delicate phenotypes because they have been bred for those characteristics. The Korean native pig (KNP) is a regional breed in Korea that was characterized by relatively high intramuscular fat content and reddish meat color compared to other western breeds such as Yorkshire (YS). YS grew faster and contained more lean muscle than KNP. We compared the KNP to Yorksire to find molecular clues determining muscle characteristics. The comparison of skeletal gene expression profiles between these two breeds showed molecular differences in muscle. We found 82 differentially expressed genes (DEGs) defined by fold change (more than 1.5 fold difference) and statistical significance (within 5% of false discovery rate). Functional analyses of these DEGs indicated up-regulation of most genes involved in cell cycle arrest, down-regulation of most genes involved in cellular differentiation and its inhibition, down-regulation of most genes encoding component of muscular-structural system, and up-regulation of most genes involved in diverse metabolism in KNP. Especially, DEGs in above-mentioned categories included a large number of genes encoding proteins directly or indirectly involved in p53 pathway. Our results indicated a possible role of p53 to determine muscle characteristics between these two breeds.

Genetic Traceability of Black Pig Meats Using Microsatellite Markers

  • Oh, Jae-Don;Song, Ki-Duk;Seo, Joo-Hee;Kim, Duk-Kyung;Kim, Sung-Hoon;Seo, Kang-Seok;Lim, Hyun-Tae;Lee, Jae-Bong;Park, Hwa-Chun;Ryu, Youn-Chul;Kang, Min-Soo;Cho, Seoae;Kim, Eui-Soo;Choe, Ho-Sung;Kong, Hong-Sik;Lee, Hak-Kyo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.926-931
    • /
    • 2014
  • Pork from Jeju black pig (population J) and Berkshire (population B) has a unique market share in Korea because of their high meat quality. Due to the high demand of this pork, traceability of the pork to its origin is becoming an important part of the consumer demand. To examine the feasibility of such a system, we aim to provide basic genetic information of the two black pig populations and assess the possibility of genetically distinguishing between the two breeds. Muscle samples were collected from slaughter houses in Jeju Island and Namwon, Chonbuk province, Korea, for populations J and B, respectively. In total 800 Jeju black pigs and 351 Berkshires were genotyped at thirteen microsatellite (MS) markers. Analyses on the genetic diversity of the two populations were carried out in the programs MS toolkit and FSTAT. The population structure of the two breeds was determined by a Bayesian clustering method implemented in structure and by a phylogenetic analysis in Phylip. Population J exhibited higher mean number of alleles, expected heterozygosity and observed heterozygosity value, and polymorphism information content, compared to population B. The $F_{IS}$ values of population J and population B were 0.03 and -0.005, respectively, indicating that little or no inbreeding has occurred. In addition, genetic structure analysis revealed the possibility of gene flow from population B to population J. The expected probability of identify value of the 13 MS markers was $9.87{\times}10^{-14}$ in population J, $3.17{\times}10^{-9}$ in population B, and $1.03{\times}10^{-12}$ in the two populations. The results of this study are useful in distinguishing between the two black pig breeds and can be used as a foundation for further development of DNA markers.

cDNA Cloning and Polymorphism of the Porcine Carbonic Anhydrase III (CA3) Gene

  • Wu, J.;Deng, Changyan;Xiong, Y.Z.;Zhou, D.H.;Lei, M.G.;Zuo, B.;Li, F.E.;Wang, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.324-328
    • /
    • 2006
  • Carbonic anhydrase III (CA3) is a member of a multigene family that encode carbonic anhydrase isozymes. In this study, a complete coding sequence of the pig CA3 gene which encodes a 260 amino-acid protein was determined. The amino acid comparison showed high sequence similarities with previously identified human (86.5%) CA3 gene and mouse (91.5%) Car3 gene. The partial genomic DNA sequences were also investigated. The length of intron 1 was 727 bp. Comparative sequencing of three pig breeds revealed that there was a T${\rightarrow}$C substitution at position 363 within intron 1. The substitution was situated within a NcoI recognition site and was developed as a PCR-restriction fragment length polymorphism (RFLP) marker for further use in population variation investigations and association analysis. Two alleles (A and B) were identified, and 617 bp fragments were observed for the AA genotype and 236 bp and 381 bp fragments for the BB genotype. The polymorphism of CA3 was detected in 8 pig breeds. Allele B was predominant in the Western pig breeds. In addition, association studies of the CA3 polymorphism with carcass traits in 140 $Yorkshire{\times}Meishan$ $F_2$ offspring showed that the NcoI PCR- RFLP genotype may be associated with variation in several carcass traits of interest for pig breeding. Allele B was associated with increases in lean meat percentage, loin eye height and loin eye area. Statistically significant association with backfat thickness was also found; pigs with the AB genotype had much less backfat thickness than AA or BB genotypes.

Evaluating genetic diversity and identifying priority conservation for seven Tibetan pig populations in China based on the mtDNA D-loop

  • Ge, Qianyun;Gao, Caixia;Cai, Yuan;Jiao, Ting;Quan, Jinqiang;Guo, Yongbo;Zheng, Wangshan;Zhao, Shengguo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.1905-1911
    • /
    • 2020
  • Objective: Tibetan pigs, an excellent species unique to China, face serious threats, which in turn affects the development and utilization of the outstanding advantages of plateau hypoxia adaptability and reduces their genetic diversity. Therefore, a discussion of measures to conserve this genetic resource is necessary. The method, based on genetic diversity, genetic divergence and total genetic contribution rate of population, reflects the priority conservation order and varies depending on the three different purposes of conservation. Methods: We analyzed mitochondrial DNA control region (D-loop) variation in 1,201 individuals from nine Tibetan pig populations across five provinces and downloaded 564 mtDNA D-loop sequences from three indigenous pig breeds in Qinghai, Sichuan, and Yunnan Provinces distributed near the Tibetan pigs. Results: We analyzed three different aspects: Changdu Tibetan pigs have the highest genetic diversity, and from the perspective of genetic diversity, the priority conservation is Changdu Tibetan pigs. Hezuo Tibetan pigs have the highest genetic contribution, so the priority conservation is Hezuo Tibetan pigs in the genetic contribution aspect. Rkaze Tibetan pigs were severely affected by indigenous pig breeds, so if considering from the perspective of introgression, the priority conservation is Rkaze Tibetan pigs. Conclusion: This study evaluated genetic diversity and comprehensively assessed conservation priority from three different aspects in nine Tibetan pig populations.

A Molecular Genetic Analysis of the Introduced Wild Boar Species (Sus scrofa coreanus) on Mount Halla, Jeju Island, Korea (제주도 한라산에 서식하는 도입종 야생멧돼지에 대한 분자유전학적 분석)

  • Han, Sang-Hyun;Oh, Jang-Geun;Cho, In-Cheol;Ko, Moon-Suck;Kim, Tae-Wook;Chang, Min-Ho;Kim, Byoung-Soo;Park, Su-Gon;Oh, Hong-Shik
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.5
    • /
    • pp.658-665
    • /
    • 2011
  • An wild boar species which has been known as an extinct species on Jeju Island, was recently observed in the surrounding areas of Mount Halla. Based on the molecular techniques, this study examines whether they are crossbred with domesticated pig breeds. Intraspecific genetic relationships with other wild boar populations and molecular sexing were examined as well. Total of four molecular markers on mitochondrial DNA(control region and ND2) and nuclear DNA(MC1R and KIT) were applied to test crossbreeding between with domesticated pig breeds, such as Landrace, Large White, Berkshire, Hampshire, and Duroc. All individuals of wild boar population had identical mtDNA control region(CR) sequences. In addition, the sequences were the same as those of some native pig breeds which are distributed in Northeast China, but different from those previously reported from the Korean Peninsula up to date. These results suggest that this population may have originated from a genetic lineage had been not previously studied and genetically related to Chinese native pig breeds. Molecular sexing results show that there are twice as many females as male. Thus the population is under expansion and its size will dynamically increase if not controlled.

Genetic Variations Analysis and Characterization of the Fifth Intron of Porcine NRAMP1 Gene

  • Yan, X.M.;Ren, J.;Ai, H.S.;Ding, N.S.;Gao, J.;Guo, Y.M.;Chen, C.Y.;Ma, J.W.;Shu, Q.L.;Huang, L.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1183-1187
    • /
    • 2004
  • The natural resistance-associated macrophage protein 1 (NRAMP1) gene was identified as a candidate gene controlling the resistance and susceptibility to a number of intracellular parasites in pigs. The genetic variations in a 1.6 kb region spanning exon 1 and exon 3 of the porcine NRAMP1 gene were investigated by PCR-HinfI-RFLP in samples of 1347 individuals from 21 Chinese indigenous pig populations and 3 western pig breeds. Three alleles (A, B, C) and four genotypes (AA, BB, AB, BC) were detected. Significant differences in genotype and allele frequencies were observed between Chinese indigenous pig populations and exotic pig breeds, while in general the differences in genotype and allele frequencies among Chinese indigenous pig populations were not significant. The allele C was detected only in Duroc, Leping Spotted and Dongxiang Spotted pig, and the two Chinese pig populations showed similar genotype and allele frequencies. Four Chinese Tibetan pig populations displayed genetic differentiation at the NRAMP1 gene locus. In addition, intron 5 of the NRAMP1 gene was isolated and characterized by directly sequencing the PCR products encompassing intron 5. The alignment of intron 5 of the porcine, human, equine and ovine NRAMP1 gene showed a similarity of 45.38% between pig and human, 52.55% between pig and horse, 63.47% between pig and sheep, respectively.