• Title/Summary/Keyword: Piezoresistive effect

Search Result 28, Processing Time 0.033 seconds

Temperature compensation method of piezoresistive pressure sensor using compensating bridge (보상용 브릿지를 이용한 압저항형 압력센서의 온도보상 방법)

  • 손원소;이재곤;최시영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.5
    • /
    • pp.63-68
    • /
    • 1998
  • The absolute pressure sensor using SDB wafer has been fabricated. the structure of the sensor consists of two wheatstone bridges and a diaphragm. One of the two wheatstone bridges is located on the edge of diaphragm, and the other is located on the center of diaphragm. The diaphragm cavity is sealted in vacuum (~10$^{5}$ Torr) to reduce the effect of temperature due to the vapor in the cavity on the sensitivity of pressure sensor. This is the minor method of temperature compensation method. In this experiment the main compensation method is to use the difference of the two bridge offset voltages. The drift of offset voltage with temperature is reduced by using this method so that temperature charcteristics is improved. In this method the temperature effect in the range of 22~100.deg. C was compensated over 80%.

  • PDF

Triboelectrification based Multifunctional Tactile Sensors

  • Park, Hyosik;Kim, Jeongeun;Lee, Ju-Hyuck
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.139-144
    • /
    • 2022
  • Advanced tactile sensors are receiving significant attention in various industries such as extended reality, electronic skin, organic user interfaces, and robotics. The capabilities of advanced tactile sensors require a variety of functions, including position sensing, pressure sensing, and material recognition. Moreover, they should comsume less power and be bio-friendly with human contact. Recently, a tactile sensor based on the triboelectrification effect was developed. Triboelectric tactile sensors have the advantages of wide material availability, simple structure, and low manufacturing cost. Because they generate electricity by contact, they have low power consumption compared to conventional tactile sensors such as capacitive and piezoresistive. Furthermore, they have the ability to recognize the contact material as well as execute position and pressure sensing functions using the triboelectrification effect. The aim of this study is to introduce the progress of research on triboelectrification-based tactile sensors with various functions such as position sensing, pressure sensing and contact material recognition.

A Smart Sensor System with a Programmable Temperature Compensation Technique (프로그래머블한 온도 보상 기법의 스마트 센서 시스템)

  • Kim, Ju-Hwan;Kang, Yu-Ri;Lee, Woo-Kwan;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.63-70
    • /
    • 2008
  • In this paper, a smart sensor system for the MEMS pressure sensor was developed. A compensation algorithm and programmable calibration circuits were presented to eliminate errors caused by temperature drift of piezoresistive pressure sensors in itself. This system consisted of signal conditioning, calibration, temperature detection, microprocessor, and communication parts and these were integrated into a SOC. A RS-232 interface was employed for monitoring and control of a smart sensor system. The area of fabricated IC is $4.38{\times}3.78\;mm^2$ and a $0.35{\mu}m$ high voltage CMOS process was used. Compensation error for temperature drift of 50 KPa pressure sensors was measured into ${\pm}0.48%$ in the range of $-40^{\circ}C{\sim}150^{\circ}C$. Total power consumption was 30.5 mW.

The effect of the boss and mass on the sensitivity of the piezoresistive sensor (압저항 센서에서 보스와 매스가 센서 민감도에 미치는 영향)

  • Shim, Jae-Joon;Lee, Sung-Wook;Han, Dong-Seop;Kim, Tae-Hyung;Han, Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.405-410
    • /
    • 2005
  • In these days, the piezoresistive material has been applied to various sensors in order to measure the change of physical quantities. But the relationship between the sensitivity of a sensor and the position and size of piezoresistor has rarely been studied. Therefore, this paper was focused on the distribution of the resistance change ratio on the diaphragm and bridge surface where piezoresistor would be formed, and proposed the proper size and position of piezoresistor with which the sensitivity of sensor was increased. As the width of mass and boss was increased, the distance between piezoresistors was closed and the maximum value of resistance change ratio was decreased by the increase of the structure stiffness.

  • PDF

The evaluation of the effect of residual stress induced in piezoresistor on resistance change ratio distribution (압저항체에서 발생하는 잔류응력이 저항변화율 분포도에 미치는 영향성 평가)

  • Shim J.J.;Han G.J.;Lee S.W.;Lee S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.790-793
    • /
    • 2005
  • In these days, the piezoresistive material has been applied to various sensors in order to measure the change of physical quantities. But the relationship between the sensitivity of a sensor and the position and size of piezoresistor has rarely been studied. Therefore, this paper was focused on the effect of residual stress induced in piezoresistor on the distribution of resistance change ratio and supposed the feasible position of piezoresistor. The resulting are following; The tensile residual stress in the vicinity of piezoresistor decreased the value of resistance change ratio and could not effect on all the area of diaphragm but local area around the piezoresistor. Also, the piezoresistor in the diaphragm type pressure sensor with boss should fabricate in the edge of boss in order to increase the sensitivity of pressure sensor.

  • PDF

The Study on Piezoresistance Change Ratio of Cantilever type Acceleration Sensor (압저항 가속도 센서의 압저항 변화율 분포도에 관한 연구)

  • 심재준;한근조;한동섭;이성욱;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.186-189
    • /
    • 2004
  • Sensor used by semiconductor process produced an MAP sensor and applied to several industry. Among those sensors divided as transducer which convert physical quantity into electrical value, piezoresistive type sensor has been studied for the properties and sensitivity of piezoresistor. In this paper, the variation of seismic mass which have been functioned as actuator moving the cantilever beam analyzed the effect on distribution of resistance change ratio and supposed the optimal shape and position of piezoresistor. The resulting are following; According to the increment of seismic mass size, the value of resistance change ratio decreased caused by improve the stiffness. Y directional piezoresistor is formed in spot of 100 m apart from cantilever edge and length of that is 800$\mu$m. To increase the sensitivity, piezoresistor is made as n-type and x-direction.

  • PDF

Characteristics of Chromiun Nitride Thin-film Strain Guges (크로질화박막 스트레인 게이지의 특성)

  • Chung, Gwiy-Sang;Kim, Gil-Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.134-138
    • /
    • 2000
  • The physical, electrical and piezoresitive characteristics of CrN(chromiun nitride) thin-films on silicon substrates have been investigated for use as strain gauges. The thin-film depositions have been carried out by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(5~25 %)$N_2$). The deposited CrN thin-films with thickness of $3500{\AA}$nd annealing conditions($300^{\circ}C$, 48 hr) in Ar-10 % $N_2$ deposition atmosphere have been selected as the ideal piezoresistive material for the strain gauges. Under optimum conditions, the CrN thin-films for the strain gauges is obtained a high electrical resistivity, $\rho=1147.65\;{\mu}{\Omega}cm$, a low temperature coefficient of resistance, TCR=-186 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=11.17.

  • PDF

Fabrication of High-sensitivity Thin-film Type Strain-guges (고감도 박막형 스트레인 게이지의 제작)

  • Chung, Gwiy-Sang;Seo, Jeong-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.135-141
    • /
    • 2000
  • The physical, electrical and piezoresitive characteristics of CrN(chromiun nitride) thin-films on silicon substrates have been investigated for use as strain gauges. The thin-film depositions have been carried out by OC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(5~25 %)$N_2$). The deposited CrN thin-films with thickness of $3500{\AA}$ and annealing conditions($300^{\circ}C$, 48 hr) in Ar-10 % $N_2$ deposition atmosphere have been selected as the ideal piezoresistive material for the strain gauges. Under optimum conditions, the CrN thin-films for the strain gauges is obtained a high electrical resistivity, $\rho=1147.65\;{\mu}{\Omega}cm$, a low temperature coefficient of resistance, TCR=-186 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=11.17.

  • PDF

Development of a Paper Strain Gauge using Inkjet-printing Technology (잉크젯 인쇄기술을 이용한 종이 스트레인게이지 개발)

  • Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.23-27
    • /
    • 2015
  • In this paper, eco-friendly paper strain gauge was fabricated in the way of printing strain gauge on paper substrate, using PEDOT:PSS ink and inkjet printer technology. As a p-type conductive high polymer, PEDOT:PSS is known to be piezoresistive effect. I formed a strain gauge by connecting in parallel 5 lines of $60{\mu}m$ width printed with PEDOT:PSS. To minimize surrounding influence such as temperature, I formed wheat-stone bridge by combining 4 strain gauges (quarter-bridge strain gauge) which were made up of PEDOT:PSS 5 lines and measured. In quarter-bridge strain gauge, only two strain gauges, facing each other, arranged in strain and horizontal direction were deformed while the other two strain gauge of vertical direction were not. Therefore, quarter-bridge strain gauge showed the output of half bridge. The fabricated quarter-bridge strain gauge had output sensitivity of $105.6{\mu}V/V{\cdot}mm$ and its output linearity was relatively good.

Flexible tactile sensor for minimally invasive surgery (최소 침습 수술을 위한 유연한 촉각 센서)

  • Lee, Junwoo;Yoo, Yong Kyoung;Han, Sung Il;Kim, Cheon Jing;Lee, Jeong Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1229-1230
    • /
    • 2015
  • Monitoring of mechanical properties of tissues as well as direction/quantities of forces is considered as an essential way for disease diagnosis and haptic feedback systems. There are extensively increasing interests for measuring normal/shear force and touch feelings, especially for surgery systems. Highly sensitive and flexible tactile sensor is needed in palpation for detecting cancer cyst as well as real time pressure monitoring in minimally invasive surgery (MIS). Importantly, MEMS technique with miniaturized fabrication technique is essential for the on-chip integration with biopsy and biomedical grasper. Here, we propose the flexible tactile sensor with high sensitivity based on piezoresistive effect. We analyzed the sensitivity according to the pressure and directions and showed the ability of discrimination of the different materials surfaces, illustrating the feasibility of the flexible tactile sensor for biomedical grasper by mimicking human skin.

  • PDF