• Title/Summary/Keyword: Piezoelectric ring transducer

Search Result 16, Processing Time 0.023 seconds

A Study for the Measurement of a fluid Density in a ripe Using Elastic Waves

  • Kim, Jin-Oh;Hwang, Kyo-Kwang;Bau, Haim-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.583-593
    • /
    • 2003
  • The effect of liquid confined in a pipe on elastic waves propagating in the pipe wall was studied theoretically and experimentally. The axisymmetric motion of the wave was modeled with the cylindrical membrane shell theory. The liquid pressure satisfying the axisymmetric wave equation was included in the governing equation as a radial load. The phase speed of the wave propagating in the axial direction was calculated, accounting for the apparent mass of the liquid. Experiments were performed in a pipe equipped with ring-shaped, piezoelectric transducers that were used for transmitting and receiving axisymmetric elastic waves in the pipe wall. The measured wave speeds were compared with the analytical ones. This work demonstrates the feasibility of using pipe waves for the determination of the density and, eventually, the flow rate of the liquid in a pipe.

Non-contact Transportation of Flat Panel Substrate by Combined Ultrasonic Acoustic Viscous and Aerostatic Forces

  • Isobe, Hiromi;Fushimi, Masaaki;Ootsuka, Masami;Kyusojin, Akira
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.44-48
    • /
    • 2007
  • In recent years, the size of plane substrates and semiconductor wafers has increased. As conventional contact transportation systems composed of, for example, carrier rollers, belt conveyers, and robot hands carry these longer and wider substrates, the increased weight results in increased potential for fracture. A noncontact transportation system is required to solve this problem. We propose a new noncontact transportation system combining acoustic viscous and aerostatic forces to provide damage-free transport. In this system, substrates are supported by aerostatic force and transported by acoustic viscous streaming induced by traveling wave deformation of a disk-type stator. A ring-type piezoelectric transducer bonded on the stator excites vibration. A stator with a high Q piezoelectric transducer can generate traveling vibrations with amplitude of $3.2{\mu}m$. Prior to constructing a carrying road for substrates, we clarified the basic properties of this technique and stator vibration characteristics experimentally. We constructed the experimental equipment using a rotational disk with a 95-mm diameter. Electric power was 70 W at an input voltage of 200 Vpp. A rotational torque of $8.5\times10^{-5}Nm$ was obtained when clearance between the stator and disk was $120{\mu}m$. Finally, we constructed a noncontact transport apparatus for polycrystalline silicon wafers $(150(W)\times150(L)\times0.3(t))$, producing a carrying speed of 59.2 mm/s at a clearance of 0.3 mm between the stator and wafer. The carrying force when four stators acted on the wafer was $2\times10^{-3}N$. Thus, the new noncontact transportation system was demonstrated to be effective.

Acoustic Properties of Ultrasonic Transducer Using Piezocomposites (압전복합재료를 이용한 초음파 트랜스듀서의 음향 특성)

  • Lee, Sang-Wook;Ryu, Jeong-Tag;Nam, Hyo-Duk;Kim, Yeon-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.80-86
    • /
    • 2007
  • We have investigated on the development of 2-2 type piezocomposites that have better piezoelectric activity and lower acoustic impedance than those of conventional piezoceramics. In this study, we have investigated the piezoelectric and acoustic properties of 2-2 type piezocomposites sensor which was fabricated using dice-and-fill technique for the different volume fraction of PZT. The specific acoustic impedance of 2-2 type piezocomposites decreased linearly when PZT volume fraction was decreased. The resonance characteristics measured by an impedance analyzer(HP4194A) were similar to the analysis of finite element method (FEM). The resonance characteristics and the electromechanical coupling factor were the best when the volume fraction PZT was 0.6. It also showed the highest result from the standpoint of sensitivity, bandwidth and ring-down property and so on at the same condition. The specific characteristics show that the 2-2 type piezocomposites turned out to be superior to the ultrasonic sensor composed by single phase PZT.

The Design of Broadband Ultrasonic Transducers for Fish Species Identification - Bandwidth Enhancement of a Ultrasonic Transducer Using Double Acoustic Matching Layers- (어종식별을 위한 광대역 초음파 변환기의 설계 ( III ) - 이중음향정합층을 이용한 초음파 변환기의 대역폭 확장 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.85-95
    • /
    • 1998
  • The broadband ultrasonic transducers have been designed to use in obtaining the broadband echo signals from fish schools in relation to the identification of fish species. The broadening of bandwidth was achieved by attaching double acoustic matching layers on the front face of a Tonpilz transducer consisted of an aluminum head, a piezoelectric ring, a brass tail and to evaluate the performance characteristics, such as the transmitting voltage response(TVR) of transducers. The constructed transducers were tested experimentally and numerically by changing the parameters such as impedances and thicknesses of the head, tail and matching layers, in the water tank. Also, the developed transducer was excited by a chirp signal and the received chirp waveforms were analyzed. According to the measured TVR results, the available 3 dB bandwidth of the transducer with double matching layers of an $Al_O_3/epoxy$ composite of 7 mm thick and a polyurethane window of 18 mm thick was 7.3 kHz with a center frequency of 38.8 kHz, and the maximum and the minimum values of the TVR in this frequency region were 135.7 dB and 132.7 dB re $1\;{\mu}Pa/V$ at 1 m, respectively. Also, the available 3 dB bandwidth of the transducer with double matching layers of an $Al_O_3/epoxy$ composite of 11 mm thick and a polyurethane window of 15 mm thick was 6.2 kHz with a center frequency of 38.6 kHz, and the maximum TVR value in the frequency region was 136.3 dB re $1\;{\mu}Pa/V$ at 1 m. Reasonable agreement between the experimental results and the numerical results for the TVR of the developed transducers was achieved. The frequency dependant characteristics of experimentally observed chirp signals closely matched to the measured TVR results. These results suggest that there is potential for increasing the bandwidth by varying other parameters in the transducer design and the material of the acoustic matching layers.

  • PDF

Vibration Characteristics of a Wire-Bonding Ultrasonic Horn (와이어 본딩용 초음파 혼의 진동 특성)

  • Kim, Young Woo;Yim, Vit;Han, Daewoong;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.227-233
    • /
    • 2014
  • This study investigates the vibration characteristics of a wire-bonding piezoelectric transducer and ultrasonic horn for high-speed and precise welding. A ring-type piezoelectric stack actuator is excited at 136 kHz to vibrate a conical-type horn and capillary system. The nodal lines and amplification ratio of the ultrasonic horn are obtained using a theoretical analysis and FEM simulation. The vibration modes and frequencies close to the driving frequency are identified to evaluate the bonding performance of the current wire-bonder system. The FEM and experimental results show that the current wire-bonder system uses the bending mode of 136 kHz as the principal motion for bonding and that the transverse vibration of the capillary causes the bonding failure. Because the major longitudinal mode exists at 119 kHz, it is recommended that the design of the current wire-bonding system be modified to use the major longitudinal mode at the excitation frequency and to minimize the transverse vibration of capillary in order to improve the bonding performance.

The Design of Broadband Ultrasonic Transducers for Fish Species Identification - Dual Resonance Design of a Ultrasonic Transducer Using a Single Acoustic Matching Layer - (어종식별을 위한 광대역 초음파 변환기의 설계 II - 단일음향정합층을 이용한 이중공진형 변환기의 설계 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.74-84
    • /
    • 1998
  • A doubly resonant ultrasonic transducer has been designed as an attempt to increase the bandwidth of underwater transducers. The dual resonance conditions were accomplished by attaching a single acoustic matching layer on the front face of a Tonpilz transducer consisted of an aluminum head, a piezoelectric ring, a brass tail and a prestress bolt. A modified Mason's model was used for the performance analysis and the design of transducers, and the constructed transducers were tested experimentally and numerically by changing the impedances and thicknesses of the head, tail and matching layers in the water tank. Two distinct resonance peaks in the transmitting voltage response(TVR) of a developed transducer were observed at 34.3 and 40.4 kHz, respectively, with the difference frequency of 6.1kHz and the center frequency of 37.2kHz. The values of TVR at these frequencies were 136.5 dB re $1\;\muPa/V$ at 34.3 kHz and 136.8 dB re $1\;\muPa/V$ at 40.4 kHz, respectively. Reasonable agreement between the experimental results and the numerical results was achieved. From this result, it is expected that the generation of the distinct resonances at any two desired frequencies can be achieved through the proper choice of the matching layer to provide the impedance transformation between the transducer and the medium.

  • PDF