• Title/Summary/Keyword: Piezoelectric properties

Search Result 1,104, Processing Time 0.026 seconds

Dielectric, Piezoelectric Properties and Temperature Stability of Resonant Frequency in PSN-PMN-PZT Ceramics (PSN-PMN-PZT 세라믹스의 유전 및 압전 특성과 공진 주파수의 온도안정성)

  • 윤광희;류주현;민석규;이명수;서성재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.391-395
    • /
    • 2000
  • In this study, the temperature coefficient of resonant frequency(TC $F_{r}$), dielectric and piezoelectric properties of Pb[(S $b_{1}$2/N $b_{1}$2/)$_{0.0035}$-(M $n_{1}$3/N $b_{2}$3/)$_{0.0065}$-(Z $r_{x}$ $Ti_{1-x}$ )$_{0.90}$] $O_3$ceramics is investigated with Zr/Ti ratio. The dielectric constant and electromechanical coupling factor( $k_{p}$) showed the highest values of 1257, 0.562 respectively when the Zr/Ti ratio is 49.5/50.5. The mechanical quality factor( $Q_{m}$) is the lowest value of 713 when the Zr/Ti ratio is 49.5/50.5, and increased with the decrease of the Zr/Ti ratio. The temperature coefficient of resonant frequency(TC $F_{r}$) change abruptly at the morphotropic phase boundary(MPB), which is between the rhombohedral phase with highly negative TC $F_{r}$ of -106ppm/$^{\circ}C$ and the tetragonal phase with highly positive TC $F_{r}$ of +64pp $m^{\circ}C$ as Zr/Ti ratio changes from 50/50 to 49.5/50.5.50.5..5.50.5.5.

  • PDF

Dielectric and Piezoelectric Properties of PSS-PT-PZ Ceramics with the Addition of Dopant (불순물 첨가에 따른 PSS-PT-PZ 세라믹의 유전 및 압전특성)

  • Kang, Jeong-Min;Lee, Sung-Gap;Lee, Sang-Heon;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.296-299
    • /
    • 2003
  • In this paper, $0.10Pb(Sb_{1/2}Sn_{1/2})O_3-0.25PbTiO_3-0.65PbZrO_3$ ceramics were fabricated by the mixed-oxide method. The sintering temperature and time were $1230^{\circ}C$ and 2[hr], respectively. The structural, dielectric and piezoelectric properties with addition of NiO were studied. The crystal structure of a specimen was rhombohedral. As a result of SEM, the average grain size were decreased with increasing the contents of NiO. But the grains of the specimens doped with 0.4wt% NiO were increased, due to deposits of excess NiO at grain boundaries in the liquid phase. Relative dielectric constant and dielectric loss of the specimen doped with 0.1wt% NiO were 701 and 0.026, respectively.

  • PDF

The dependent of growth temperature of piezoelectric SBN Thin Film by Metal Organic Decomposition Process and their properties (MOD 법에 의한 압전 SBN 박막의 성장 온도 의존성 및 특성)

  • Kim, Kwang-Sik;Jang, Gun-Ik;Ur, Soon-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.382-383
    • /
    • 2006
  • The tungsten bronze type of strontium barium niobate(SBN) thin film was synthesized by metal organic decomposion method for SBN stock solution and the SBN thin film process were deposited by spin-coating process on Pt-deposited si-wafer(100) by magnetron sputtering system. The thickness of SBN thin film was 150~200 nm and were optimized for rpm of spin-coater system. The structural variation of SBN thin film was studied by TG-DTA and XRD. The deposited SBN stock solution on annealing at $400{\sim}800^{\circ}C$ a pure tungsten bronze SBN phase and the corresponding. average grain size about 500~1000 nm influenced by annealing temperature. The piezoelectric properties of prepared SBN thin film, the remanent polarization value(2Pr) and coercive field was $1.2{\mu}C/cm^2$ and 2.15V/cm, respectively.

  • PDF

Performance analysis of bone scaffolds with carbon nanotubes, barium titanate particles, hydroxyapatite and polycaprolactone

  • Osfooria, Ali;Selahi, Ehsan
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.4 no.1
    • /
    • pp.33-44
    • /
    • 2019
  • This paper presents a novel structural composition for artificial bone scaffolds with an appropriate biocompatibility and biodegradability capability. To achieve this aim, carbon nanotubes, due to their prominent mechanical properties, high biocompatibility with the body and its structural similarities with the natural bone structure are selected in component of the artificial bone structure. Also, according to the piezoelectric properties of natural bone tissue, the barium titanate, which is one of the biocompatible material with body and has piezoelectric property, is used to create self-healing ability. Furthermore, due to the fact that, most of the bone tissue is consists of hydroxyapatite, this material is also added to the artificial bone structure. Finally, polycaprolactone is used in synthetic bone composition as a proper substrate for bone growth and repair. To demonstrate, performance of the presented composition, the mechanical behaviour of the bone scaffold is simulated using ANSYS Workbench software and three dimensional finite element modelling. The obtained results are compared with mechanical behaviour of the natural bone and the previous bone scaffold compositions. The results indicated that, the modulus of elasticity, strength and toughness of the proposed composition of bone scaffold is very close to the natural bone behaviour with respect to the previous bone scaffold compositions and this composition can be employed as an appropriate replacement for bone implants.

Characteristics of Piezoelectric and dielectric of PMWN-PZT Ceramics (PMWN-PZT계 압전세라믹의 압전 및 유전특성)

  • 홍종국;이종섭;채홍인;윤만순;정수현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.455-459
    • /
    • 2001
  • In this paper, the dielectric and pizoelectric properties of 0.05Pb(M $n_{04}$ $W_{0.2}$N $b_{0.4}$) $O_3$-0.95(PbZ $r_{x}$ $Ti_{1-x}$ ) $O_3$+yN $b_2$ $O_{5}$ , are investigated as a function of the mole ratio of Zr and the amount of N $b_2$ $O_{5}$ . Also, the phase is analyzed by XRD. When the mole ratio of Zr is 0.51, the electromechanical coupling coefficient( $k_{p}$ ), relative dielectric constant ($\varepsilon$$^{T}$ $_{33}$ /$\varepsilon$$_{0}$ ), piezoelectric stain constrain ( $d_{33}$ and dielectric loss tangent show maximum, while the mechanical quality factor shows minimum value ; $k_{p}$ =56.5%, $d_{33}$ =258pC/N, $\varepsilon$$^{T}$ $_{33}$ /$\varepsilon$$_{0}$ =1170, $Q_{m}$ =1150, tan$\delta$=0.51%. At that composition, MPB which rhombohedral and tetragonal phase coexist in this ternary system is shown by the results of XRD analysis. Also, when the amount of N $b_2$ $O_{5}$ is 0.3wt%, the mechanical quality factor is increased to about 2000. The phase transition temperature of the ternary piezoelectric ceramic system showed about 35$0^{\circ}C$.TEX>.>.>.

  • PDF

DLC Structure Layer for Piezoelectric MEMS Switch (압전 MEMS 스위치 구현을 위한 DLC 구조층에 관한 연구)

  • Hwang, Hyun-Suk;Lee, Kyong-Gun;Yu, Young-Sik;Lim, Yun-Sik;Song, Woo-Chang
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.28-31
    • /
    • 2011
  • In this paper, a new set of structural and sacrificial material that is diamond like carbon (DLC)/photoresist for high performance piezoelectric RF-MEMS switches which are actuated in d33 mode is suggested. To avoid curing problem of photoresist sacrificial layer, DLC structure layer is deposited at room temperature by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) method. And lead zirconate titanate (PZT) piezoelectric layer is deposited on structure layer directly at room temperature by rf magnetron sputtering system and crystallized by rapid thermal annealing (RTA) equipment. Particular attention is paid to the annealing of PZT film in order to crystallize into perovskite and the variation of mechanical properties of DLC layer as a function of annealing temperature. The DLC layer shows good performance for structure layer in aspect to Young's modulus and hardness. The fabrication becomes much simpler and cheaper with use of a photoresist.

Low Temperature Sintering of BNKT Lead-Free Piezoelectric Ceramics Using CuO-Coated Na0.5Bi4.5Ti4O15 Templates (산화구리가 피복된 Na0.5Bi4.5Ti4O15 틀입자를 이용한 BNKT 무연 압전 세라믹스의 저온소성 연구)

  • Jeong, Gwang-Hwi;Lee, Sang-Seop;Ahn, Chang Won;Han, Hyoung Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.337-343
    • /
    • 2020
  • This study investigated the low temperature sintering with various templates of Bi-based lead-free piezoelectric ceramics. The effects of using CuO-coated Na0.5Bi4.5Ti4O15 templates on the sintering behavior as well as the dielectric, ferroelectric, and piezoelectric properties of Bi1/2(Na0.78K0.22)1/2TiO3 (BNKT) ceramics have been examined. In comparison with the specimens sintered with the Na0.5Bi4.5Ti4O15 templates without CuO coating, those sintered with the CuO-coated Na0.5Bi4.5Ti4O15 templates showed larger template sizes as well as a larger electric field induced strain (Smax/Emax) of 422 pm/V after sintering at temperatures as low as 975℃. These results are promising for low-cost multilayer ceramic actuator applications.

Dielectric and Piezoelectric Characteristics of 0.95(K0.5Na0.5)NbO3-0.05Li(Sb0.8Nb0.2)O3 Pb-free Ceramics with amount of Ag2O Addition (Ag2O 첨가량에 따른 0.95(K0.5Na0.5)NbO3-0.05Li(Sb0.8Nb0.2)O3 무연 세라믹스의 유전 및 압전특성)

  • Kim, Do-Hyung;Yoo, Ju-Hyun;Jeong, Yeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.925-929
    • /
    • 2009
  • In this study, $0.95(K_{0.5}Na_{0.5})NbO_3-0.05Li(Sb_{0.8}Nb_{0.2})O_3$ ceramics were investigated as a function of the amount of $Ag_2O$ addition in order to improve dielectric and piezoelectric properties of lead-free piezoelectric ceramics. With increasing the amount of $Ag_2O$ addition, density and electromechanical coupling factor ($k_p$) increased up to 0.2 wt.% $Ag_2O$ and decreased above 0.2 wt.% $Ag_2O$. At the sintering temperature of $1020^{\circ}C$, electromechanical coupling factor ($k_p$), density, dielectric constant (${\varepsilon}r$) and curie temperature (Tc) of ceramics with 0.2 wt% $Ag_2O$ showed the optimal values of 0.42, $4.33\;g/cm^3$, 738 and $393^{\circ}C$, respectively.

Portable Piezoelectric Film-based Glove Sensor System for Detecting Internal Defects of Watermelon (수박 내부결함판정을 위한 휴대형 압전형 장갑 센서시스템)

  • Choi, Dong-Soo;Lee, Young-Hee;Choi, Seung-Ryul;Kim, Hak-Jin;Park, Jong-Min;Kato, Koro
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.30-37
    • /
    • 2008
  • Dynamic excitation and response analysis is an acceptable method to determine some of physical properties of agricultural product for quality evaluation. There is a difference in the internal viscoelasticity between sound and defective fruits due to the difference of geometric structures, thereby showing different vibration characteristics. This study was carried out to develop a portable piezoelectric film-based glove sensor system that can separate internally damaged watermelons from sound ones using an acoustic impulse response technique. Two piezoelectric sensors based on polyvinylidene fluoride (PVDF) films to measure an impact force and vibration response were separately mounted on each glove. Various signal parameters including number of peaks, energy ratio, standard deviation of peak to peak distance, zero-crossing rate, and integral value of peaks were examined to develop a regression-estimated model. When using SMLR (Stepwise Multiple Linear Regression) analysis in SAS, three parameters, i.e., zeros value, number of peaks, and standard deviation of peaks were selected as usable factors with a coefficient of determination ($r^2$) of 0.92 and a standard error of calibration (SEC) of 0.15. In the validation tests using twenty watermelon samples (sound 9, defective 11), the developed model provided good capability showing a classification accuracy of 95%.

Optimization of Lithium in Li1+x[Mn0.720Ni0.175Co0.105]O2 as a Cathode Material for Lithium Ion Battery

  • Kim, Jeong-Min;Jeong, Ji-Hwa;Jin, Bong-Soo;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.97-102
    • /
    • 2011
  • Different amounts of excess lithium in the range of x = 0~0.3 were added to $Li_{1+x}[Mn_{0.720}Ni_{0.175}Co_{0.105}]O_2$ cathode materials synthesized using the co-precipitation method to investigate its microstructure and electrochemical properties. Pure layered structure without impurities was confirmed in the XRD pattern analysis and increasing peak intensity of $Li_2MnO_3$ was observed along with the addition of over 0.2 mol Li. The initial discharge capacity of the stoichiometric composition was determined to be 246 mAh/g, while the discharge capacity of the addition of 0.1 mol Li was obtained to be 241 mAh/g, which was not significantly different from that of the stoichiometric composition. However, the discharge capacities decreased dramatically after the addition of 0.2 and 0.3 mol Li to 162 mAh/g and 146 mAh/g, respectively. In the rate capability test, the active $Li_{1+x}[Mn_{0.720}Ni_{0.175}Co_{0.105}]O_2$ cathode material of the stoichiometric composition showed a dramatic decrease in its discharge capacity with increasing C-rate, as evidenced by the result that the discharge capacity at 5C was 13% compared with 0.1C. On the other hand, the discharge capacity of compositions containing excess lithium was improved at higher current rates. The cycling test showed that the composition containing an excess of 0.1 mol Li had the most outstanding capacity retention.