• Title/Summary/Keyword: Piezoelectric motor

Search Result 192, Processing Time 0.026 seconds

Effect of Pressing Force Applied to a Rotor on Revolution Characteristics in the Windmill Type Ultrasonic Motor (풍차형 초음파 전동기의 회전자에 인가된 힘이 회전특성에 미치는 영향)

  • 김영균;김진수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.390-395
    • /
    • 2000
  • The ultrasonic motor have recently begun to be used for certain unique practical utilizations in the fields of industrial medical consumer and automotive applications. Ultrasonic motor stimulated to ultrasonic oscillations by piezoelectrics to drive a rotor via friction contact. The metal and ceramic composite component was used as the stator element to generate ultrasonic vibrations. The ultrasonic motor used here was the windmill type ultrasonic motor operated by single-phase AC source. The windmill type ultrasonic motors has only three components; a stator element of two windmill shape slotted metal endcaps a rotor and a bearing. In this paper a prototype motor with 11.35 mm diameter was fabricated then relationship between the pressing force applied to a rotor and the rotation characteristic of windmill type ultrasonic motor are investigated when stator’s slots was changed from 4, 6, 8 and thickness changed from 0.15, 0.20 mm, respectively. Optimum pressing force applied to a rotor in the six stators was 1.2 mN.

  • PDF

A Research of Power-Efficient Driving Scheme for Auto-Focus on Image Sensor Module (이미지 센서 모듈을 위한 자동-초점 기능의 전력-효율적인 구동 방법에 대한 연구)

  • Cha, Sang-Hyun;Park, Chan-Woo;Lee, Yuen-Joong;Hwang, Byoung-Won;Kwon, Oh-Jo;Park, Deuk-Hee;Kwon, Kyoung-Soo;Lee, Jae-Shin;Hwang, Shin-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1197-1202
    • /
    • 2009
  • We present a power-efficient driving scheme that consists of piezoelectric actuator and driver IC for AF (Auto-Focus) on ISM (Image Sensor Module). The piezoelectric actuator is more power-efficient than conventional voice coil motor actuator. And high power-efficiency driver IC is designed. So the proposed driving scheme using designed piezoelectric actuator and driver IC is more close to recent trend of green IT. The diver IC should guarantee fast and accurate performance. So, the optimum driving method and high accurate frequency synthesizer are proposed. The die area of designed driver IC is $2.0{\times}1.6mm^2$ and power consumption is 2.8mW.

Piezoelectric and Dielectric Properties of NaNbO3-LiNbO3 Ceramics according to the BaTiO3 Substitution (BaTiO3 치환에 따른 NaNbO3-LiNbO3 세라믹스의 압전 및 유전특성)

  • Lee, Sang-Ho;Yoo, Ju-Hyun;Mah, Suk-Burm;Kim, Seang-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.205-209
    • /
    • 2009
  • In this study, in order to develop the composition ceramics for lead-free ultrasonic motor, (1-x-0.09)$NaNbO_{3-x}BaTiO_3-0,09LiNbO_3$ ceramics were fabricated using a conventional mixed oxide process and their piezoelectric and dielectric characteristics were investigated according to the $BaTiO_3$ substitution. All the specimens showed orthorhombic phase structure without secondary phase, $BaTiO_3$ substitution enhanced density, dielectric constant(${\epsilon}_r$) and electromechanical coupling factor($k_p$), However, mechanical quality factor was deteriorated. Curie temperature of specimens was observed as about $380^{\circ}C$. At the $BaTiO_3$ substitution of 4 mol%, density, electromechanical coupling factor($k_p$), dielectric constant(${\epsilon}_r$) and piezoelectric constant($d_{33}$) of specimen showed the optimum value of $4.493g/cm^3$, 0.236, 175, 70 pC/N, respectively.

Design of a Valveless Type Piezoelectric Pump for Micro-Fluid Devices

  • Kim, Hyun-Hoo;Oh, Jin-Heon;Yoon, Jae-Hun;Jeong, Eui-Hwan;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.65-68
    • /
    • 2010
  • The operation principle of a traveling wave rotary type ultrasonic motor can be successfully applied to the fluidic transfer mechanism of the micro-pump. This paper proposes an innovative valveless micro-pump type that uses an extensional vibration mode of a traveling wave as a volume transportation means. The proposed pump consists of coaxial cylindrical shells that join the piezoelectric ceramic ring and metal body, respectively. In order to confirm the actuation mechanism of the proposed pump model, a numerical simulation analysis was implemented. In accordance with the variations in the exciting wave mode and pump body dimension, we analyzed the vibration displacement characteristics of the proposed model, determined the optimal design condition, fabricated the prototype pump from the analysis results and evaluated its performance. The maximum flow rate was approximately $595\;{\mu}L/min$ and the highest back pressure was 0.88 kPa at an input voltage of $130\;V_{rms}$. We confirmed that the peristaltic motion of the piezoelectric actuator was effectively applied to the fluid transfer mechanism of the valveless type micro pump throughout this research.

Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field

  • Arefi, M.;Rahimi, G.H.;Khoshgoftar, M.J.
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.427-439
    • /
    • 2012
  • The present paper deals with the analytical solution of a functionally graded piezoelectric (FGP) cylinder in the magnetic field under mechanical, thermal and electrical loads. All mechanical, thermal and electrical properties except Poisson ratio can be varied continuously and gradually along the thickness direction of the cylinder based on a power function. The cylinder is assumed to be axisymmetric. Steady state heat transfer equation is solved by considering the appropriate boundary conditions. Using Maxwell electro dynamic equation and assumed magnetic field along the axis of the cylinder, Lorentz's force due to magnetic field is evaluated for non homogenous state. This force can be employed as a body force in the equilibrium equation. Equilibrium and Maxwell equations are two fundamental equations for analysis of the problem. Comprehensive solution of Maxwell equation is considered in the present paper for general states of non homogeneity. Solution of governing equations may be obtained using solution of the characteristic equation of the system. Achieved results indicate that with increasing the non homogenous index, different mechanical and electrical components present different behaviors along the thickness direction. FGP can control the distribution of the mechanical and electrical components in various structures with good precision. For intelligent properties of functionally graded piezoelectric materials, these materials can be used as an actuator, sensor or a component of piezo motor in electromechanical systems.

Design and Prototyping of a Novel Type Piezoelectric Micro-pump

  • Oh, Jin-Heon;Lim, Jong-Nam;Lee, Seung-Su;Heo, Jun;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.181-185
    • /
    • 2008
  • Using the extensional vibration mode of PZT ring, a piezopump is successfully made. The PZT ring is polarized with thickness direction. The traveling extensional wave along the circumference of the ring is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. The proposed piezopump is consisted of coaxial cylindrical shells that are bonded piezoelectric ceramic ring. The pump takes an unobtrusive operation into the simple displacing mechanism using peristaltic traveling waves without the physical moving parts. The finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software. Components of piezopump were made, assembled, and tested to validate the concepts of the proposed pump and confirm the simulation results. The performance of the proposed piezopump is about 580 ${\mu}l/min$ in flow rate with the highest pressure level of 0.85 kPa, when the driving voltage is 150 $V_p$, 57 kHz.

A Study on the Characteristics of Linear Ultrasonic Motor Using Langevin type Piezoelectic Transducer (란쥬반형 압전 진동자를 이용한 선형 초음파 모터의 특성연구)

  • Choi, Myeong-Il;Park, Tae-Gone;Kim, Myeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.137-139
    • /
    • 2003
  • Transducer for ultrasonic linear motor with the symmetric and anti-symmetric modes was studied. The ultrasonic linear motor consists of two Langevin type piezoelectric vibrators that cross at right angles with each other in tip. In order to excite symmetric and anti-symmetric modes, the transducer must have a phase shift of 90 degree in space and time. Therefore, the tip of transducer moves on an elliptical motion. In this paper, the finite element analysis was used to optimize dimension and displacement of the transducer The ultrasonic motor was fabricated using the simulated result and the driving characteristics were measured. No-load velocity was 0.28[m/s] and the maximum efficiency was 30[%] in resonance frequency.

  • PDF

Driving Characteristics of the Cross Type Ultrasonic Rotary Motor Dependent on the Materials of the Stator (스테이터의 재질에 따른 Cross형 초음파 회전모터의 구동특성)

  • Chong, Hyon-Ho;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.891-895
    • /
    • 2005
  • Novel structure ultrasonic motors which have cross type stator were designed and fabricated. Driving characteristics of the motors were analyzed and measured by changing the materials of the stator. This ultrasonic motor has stator with hollowed cross bar and the stator rotate the rotor using elliptical displacement of the inside tips. This motion is generated by lateral vibration mode of cross bars. This stator was analyzed by finite element analysis depandent on stator's materials. And the cross type ultrasonic motors were made by analyzed results. The larger displacements were obtained, when the density of material was decreased. But the stress was increased when the stator's material has large density and Young's modulus. The fabricated one has high speed and torque in large stress on contact point between rotor and stator. The stress was more effected on speed and torque than the displacement.

A Characteristic of Linear Ultrasonic Motor using Langevin Type Transducer (Langevin 진동자를 이용한 선형 초음파 모터의 특성)

  • Seo, San-Dong;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.627-630
    • /
    • 2004
  • Transducer for linear ultrasonic motor with symmetric and anil anti-symmetric modes was studied. The transducer was composed of two Langevin-type vibrators that cross at right angles with each other at tip. In order to excite two vibration modes, two Langevin-type vibrators must have 90-degree phase difference with each other. As a result, tip of transducers moves in elliptical motion. Elliptical trajectoric of transducer was analyzed by employing the finite element method. From these results, the ultrasonic motor was fabricated and was measured for characteristics. In this paper compared an ANSYS analysis with an experiment results. The no-road maximum speed was 113.1[cm/s].

  • PDF

Driving Characteristic of L1-B4 Type Ultrasonic Linear Motor by Varying the Size of Elastic Material (탄성체의 크기 변화에 따른 L1-B4형 초음파 리니어 모터의 구동 특성)

  • Kim, Hang-Sik;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.93-96
    • /
    • 2004
  • An ultrasonic linear motor was composed of a slider and a stator vibrator including piezoelectric material and elastic material. The ultrasonic linear motors mainly consist of an ultrasonic vibrator which generates elliptical oscillations. L1-B4 ultrasonic linear motor use longitudinal and bending multi-vibration. In order to design stators which has high efficiency and driving characteristics, The finite element method was used to optimize dimension of ultrasonic vibrator and direction of vibratory displacement. stator vibrator of respectively width 3, 5, 7[mm] was fabricated and experimented. as results When width was 5[mm], the driving characteristics was good.

  • PDF