• 제목/요약/키워드: Piezoelectric layer

검색결과 352건 처리시간 0.026초

Flexible tactile sensor array for foot pressure mapping system in a biped robot

  • Chuang, Cheng-Hsin;Liou, Yi-Rong;Shieh, Ming-Yuan
    • Smart Structures and Systems
    • /
    • 제9권6호
    • /
    • pp.535-547
    • /
    • 2012
  • Controlling the balance of motion in a context involving a biped robot navigating a rugged surface or a step is a difficult task. In the present study, a $3{\times}5$ flexible piezoelectric tactile sensor array is developed to provide a foot pressure map and zero moment point for a biped robot. We introduce an innovative concept involving structural electrodes on a piezoelectric film in order to improve the sensitivity. The tactile sensor consists of a polymer piezoelectric film, PVDF, between two patterned flexible print circuit substrates (FPC). Additionally, a silicon rubber bump-like structure is attached to the FPC and covered by a polydimethylsiloxane (PDMS) layer. Experimental results show that the output signal of the sensor exhibits a linear behavior within 0.2 N ~ 9 N, while its sensitivity is approximately 42 mV/N. According to the characteristic of the tactile sensor, the readout module is designed for an in-situ display of the pressure magnitudes and distribution within $3{\times}5$ taxels. Furthermore, the trajectory of the zero moment point (ZMP) can also be calculated by this program. Consequently, our tactile sensor module can provide the pressure map and ZMP information to the in-situ feedback to control the balance of moment for a biped robot.

A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment

  • Hajmohammad, Mohammad Hadi;Zarei, Mohammad Sharif;Farrokhian, Ahmad;Kolahchi, Reza
    • Advances in nano research
    • /
    • 제6권4호
    • /
    • pp.299-321
    • /
    • 2018
  • A layerwise shear deformation theory is applied in this paper for buckling analysis of piezoelectric truncated conical shell. The core is a multiphase nanocomposite reinforced by carbon nanotubes (CNTs) and carbon fibers. The top and bottom face sheets are piezoelectric subjected to 3D electric field and external voltage. The Halpin-Tsai model is used for obtaining the effective moisture and temperature dependent material properties of the core. The proposed layerwise theory is based on Mindlin's first-order shear deformation theory in each layer and results for a laminated truncated conical shell with three layers considering the continuity boundary condition. Applying energy method, the coupled motion equations are derived and analyzed using differential quadrature method (DQM) for different boundary conditions. The influences of some parameters such as boundary conditions, CNTs weight percent, cone semi vertex angle, geometrical parameters, moisture and temperature changes and external voltage are investigated on the buckling load of the smart structure. The results show that enhancing the CNTs weight percent, the buckling load increases. Furthermore, increasing the moisture and temperature changes decreases the buckling load.

Thermal buckling resistance of a lightweight lead-free piezoelectric nanocomposite sandwich plate

  • Behdinan, Kamran;Moradi-Dastjerdi, Rasool
    • Advances in nano research
    • /
    • 제12권6호
    • /
    • pp.593-603
    • /
    • 2022
  • The critical buckling temperature rise of a newly proposed piezoelectrically active sandwich plate (ASP) has been investigated in this work. This structure includes a porous polymeric layer integrated between two piezoelectric nanocomposite layers. The piezoelectric material is made of a passive polymeric material that is activated by lead-free nanowires (NWs) of zinc oxide (ZnO) embedded inside the matrix. In both nanocomposite layers and porous core, functional graded (FG) patterns have been considered for the distributions of ZnO NWs and voids, respectively. By adopting a higher-order theory of plates, the governing equations of thermal buckling are obtained. This set of equations is then treated using an extended mesh-free solution. The effects of plate dimensions, porosity states, and the nanowire parameters have been investigated on the critical buckling temperature rises of the proposed lightweight ASPs with different boundary conditions. The results disclose that the use of porosities in the core and/or mixing ZnO NWs in the face sheets substantially arise the critical buckling temperatures of the newly proposed active sandwich plates.

$Y_{2}O_{3}$가 첨가된 $Pb(Ni_{1/3}Nb_{2/3})O_{3}-PbZrO_{3}-PbTiO_{3}$ 세라믹의 압전특성 및 적층형 압전 Actuator에 관한 연구 (Piezoelectric Properties of $Pb(Ni_{1/3}Nb_{2/3})O_{3}-PbZrO_{3}-PbTiO_{3}$ Ceramics doped with$Y_{2}O_{3}$ and Their Application to Multilayer Piezoelectric Actuators)

  • 최해윤;권정호;이대수;김일원;송재성;정순종;이재신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.317-321
    • /
    • 2002
  • Piezoelectric properties of $(Pb_{1-x}Y_x)[(Ni_{1/3}Nb_{2/3})_{0.15}(Zr_{1/2}Ti_{1/2)})_{0.85}]O_{3}$ (x=0~0.05) ceramics were investigated, The stoichiometric PNN-PZT ceramics required the sintering temperature above $1100^{\circ}C$, but the addition of $Y_{2}O_{3}$ in the PNN-PZT ceramic lowered the sintering temperature down to $1000^{\circ}C$. In case of x=0.005, the electro-mechanical coupling $factor(K_p)$, the piezoelectric $constant(d_{33})$, and the maximum strain ratio of PNN-PZT ceramics sintered at $1000^{\circ}C$ were 53.1%, 395pC/N, and $2200{\times}10^{-6}$ respectively, A 30-layer piezoelectric actuator$(10{\times}10{\times}1.7mm)$ fabricated with the above material showed the maximum strain of $2.09{\mu}m$ under 100V DC bias.

  • PDF

저온소결 세라믹을 이용한 밴더형 적층 액츄에이터의 제작 (Bending Mode Multilayer Actuator Using Low Temperature Sintering Piezoelectric Ceramics)

  • 이주영;김상종;강종윤;김현재;이상렬;윤석진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.68-69
    • /
    • 2005
  • Low temperature ($\leq900^{\circ}C$) sintering piezoelectric ceramics $0.01Pb(Mg_{1/2}W_{1/2})O_3$-0.41Pb$(Ni_{1/3}Nb_{2/3})O_3-0.35PbTiO_3-0.23PbZrO_3+0.1wt%Y_2O_3+xwt%ZnO$ $(0{\leq}x{\leq}2.5)$ have been developed and investigated. The electromechanical coupling coefficient ($k_p$), piezoelectric constant ($d_{33}$), and mechanical quality factor ($Q_m$) have been measured to characterize the piezoelectric materials system. When 2.0 wt% ZnO is added, the properties of the system, $d_{33}$ = 559 pC/N, $k_p$ = 55.0 % and $Q_m$ = 73.4 are obtained which are very suitable for piezoelectric actuators. A bending mode multilayer actuator has been also developed using the materials which size is $27(L)\times9(W)\times1.07(t)mm^3$. The actuators are fabricated by multilayer ceramic (MLC) process and consist of24 layers and each layer thickness is $35{\mu}m$. At this time, the displacement of actuator was $100{\mu}m$ at 28V.

  • PDF

다양한 형상 변화에 따른 에너지 수확용 블록 구조의 동적 특성 및 압전 효과 (Dynamic Characteristics and Piezoelectric Effect of Energy Harvesting Block Structures with Different Shapes)

  • 노명현;이상열
    • 대한토목학회논문집
    • /
    • 제32권6A호
    • /
    • pp.379-387
    • /
    • 2012
  • 본 연구에서는 새로운 에너지 수확용 Multi-layer 블록 구조를 제시하고 고체 및 Shell 유한 요소를 사용하여 다양한 기하학적 형상 변화에 대한 자유진동 특성을 분석하고 압전 성능을 실험적으로 평가한다. 본 연구에서 제시하는 블록 구조에 대한 2차원 및 3차원 유한요소 모델은 해석의 정확성 뿐 만 아니라 전체 진동 모드를 정확히 보여준다는 점에서 장점을 갖는다. ABAQUS가 적용된 유한요소 모델은 다양한 Tip mass 및 PZT 변화에 따른 Multi-layer 블록 구조의 자유진동을 분석하기 위하여 사용되었다. 특히, 본 연구에서 제시한 결과는 블록구조 전체의 기하학적 형상, Tip mass 및 Hole의 유무, Tip mass 및 PZT의 위치변화 등에 대하여 국부 및 전체 진동 모드에 미치는 중요한 영향들에 대하여 초점을 둔다. 또한, 실험실 규모의 실제 모형 실험을 수행하여 개발한 에너지 블록구조의 발전성능을 평가하였다.

도플러 속도계(DVL)를 위한 광대역 수중 음향 트랜스듀서 (Broad-Band Underwater Acoustic Transducer for Doppler Velocity Log)

  • 윤철호;이영필;고낙용;문용선
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.755-759
    • /
    • 2013
  • A broad-band underwater acoustic transducer that uses thickness vibration mode, derived from a disk type piezoelectric ceramic, has been proposed and designed for DVL (Doppler Velocity Log). Three different types of acoustic transducer were evaluated with respect to the transmitting voltage response, receiving voltage sensitivity and bandwidth of the transducer. The effect of the acoustic impedance matching layer and backing layer is discussed. The results demonstrated that three matching layer with lossy backing layer is the best configuration for underwater transducer. The trial underwater acoustic transducer with three matching layer has a frequency bandwidth of 55%, maximum transmitting voltage response of 200 dB and a maximum receiving voltage sensitivity of -187.3 dB.

미세 조작을 위한 압전 구동 집게의 설계 및 제작 (A Design and Manufacturing of Two Types of Micro-grippers using Piezoelectric Actuators for the Micromanipulation)

  • 박종규;문원규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.246-250
    • /
    • 2003
  • In this study, two new types of micro-grippers in which micro-fingers are actuated by piezoelectric multi-layer benders and stacks are introduced for the manipulation of micrometer-sized objects. First, we constructed a 3-chopstick-mechanism tungsten gripper, which is composed of three chopsticks: two are designed to grip micro-objects, and tile third is used to help grasp and release the objects through overcoming especially electrostatic force among some surface effects including electrostatic, van der Waals forces and surface tension. Second, a 2-chopstick-mechanism silicon micro-gripper that uses an integrated force sensor to control the gripping force was developed. The micro-gripper is composed of a piezoelectric multilayer bender for actuating the gripper fingers, silicon fingertips fabricated by use of silicon-based micromachining, and supplementary supports. The micro-gripper is referred to as a hybrid-type micro-gripper because it is composed of two main components; micro-fingertips fabricated using micromachining technology to integrate a very sensitive force sensor for measuring the gripping force, and piezoelectric gripper finger actuators that are capable of large gripping forces and moving strokes. The gripping force signal was found to have a sensitivity of 667 N/V. To the design of each of components of both of the grippers. a systematic design approach was applied, which made it possible to establish the functional requirements and design parameters of the micro-grippers. The micro-grippers were installed on a manual manipulator to assess its performance in tasks such as moving micro-objects from one position to a desired position. The experiment showed that the micro-grippers function effectively.

  • PDF

인체의 사지 동작 분석에 기반한 압전 에너지 수확 의류의 탐색적 연구 (An Exploration on the Piezoelectric Energy Harvesting Clothes based on the Motion Analysis of the Extremities)

  • 박선형;조현승;양진희;윤대연;윤광석;이주현
    • 감성과학
    • /
    • 제16권1호
    • /
    • pp.85-94
    • /
    • 2013
  • 인체의 동작으로부터 전기 에너지를 수확하려는 압전 에너지 수확에 관한 연구가 최근 활발히 진행되고 있으며, 본 연구에서는 이러한 압전 에너지 수확 소자를 의류에 적용하여 에너지 수확 의류를 설계하였다. 먼저, 동작에너지를 수확하는데 적합한 사지의 인체 부위를 밝히기 위해 3차원 모셥 캡쳐를 실시하였고, 그 결과 엉덩이, 팔꿈치, 무릎이 적합한 부위임이 밝혀졌으며, 이 중, 움직임이 자유로운 팔꿈치와 무릎이 동작에너지 수확 부위로 도출되었다. 압전 에너지 수확 소자의 경우 의류에 적용되기 위해서는 유연하면서도 동작에 민감하게 반응되는 새로운 구조가 필요하였으며, 2개 소자를 적층으로 구성하여 발생하는 전력량을 높이는 새로운 방식이 제안되었다. 의류의 경우 압전 에너지 수확 부위인 팔꿈치와 무릎 부위에서 인체에 잘 밀착되면서 움직임을 제한하지 않는 구조가 요구되었으며, 이에 가장 적합한 무봉제 의류로 제작되었다. 개발된 압전 에너지 수확소자를 부착한 에너지 수확 의류를 시험한 결과 높은 전기에너지 발생 결과를 얻을 수 있었다.

  • PDF