• Title/Summary/Keyword: Piezoelectric fields

Search Result 144, Processing Time 0.029 seconds

Dielectric Properties of PNN-PZN System Ceramics with PZT (PZT첨가에 따른 PNN-PZN계 세라믹스의 유전특성)

  • Lee, S.H.;Kim, H.G.;Son, M.H.;Park, J.H.;SaGong, G.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1508-1511
    • /
    • 1996
  • In the fields of the optics, precise machine, semiconducting processing, the micro-positioning actuators are required for the control of position in submicron range. In this study, dielectric properties of 0.5PNN-(0.5-x)PZN-xPZT system ceramics with different PZT mole ratio were investigated. As the amount of PZT incerases, curie temperature was increased. The maximum of dielectric and piezoelectric constant was shown at 0.3 mole ratio of PZT amount. As a results, we have found that the structrue of ceramics with PZT 0.3 mole was morphotropic phase boundary.

  • PDF

A Study on the System Identification of Tool Breakage Detection in Turning (선삭가공에서 공구파손 검출 시스템 인식에 관한 연구)

  • 사승윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.40-45
    • /
    • 1999
  • The demands for robotic and automatic system are continually increasing in manufacturing fields. There have been many studies to monitor and predict the system, but they have mainly focused upon measuring cutting force, and current of motor spindle, and upon using acoustic sensor, etc.In this study, time series sequence of cutting force was acquired by taking advantage of piezoelectric type tool dynamometer. Radial cutting force was obtained from it and was available for useful observation data. The parameter was estimated using PAA (parameter adaptation algorithm) from observation data. ARMA(auto regressive moving average) model was selected for system model and second order was decided according to parameter estimation. Uncorrelation test was also carried out to verify convergence of parameter.

  • PDF

Sound Absorption Effects in a Rectangular Cavity According to the Surface Impedance of Wall (벽면의 임피던스변화에 따른 폐공간 내부에서의 음장특성 분석)

  • 오재응;김상헌;도중석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.687-694
    • /
    • 1997
  • The anisotropy and shape of distributed piezopolymer actuator have advantages over isotropic piezo ceramic materials, since these features of PVDF can be utilized as another design variable in control application. This study is interested in the reduction of sound transmission through elastic plate into interior space by using the PVDF actuator. The plate-cavity system is adopted as a test problem. The vibration of composite plate and the sound fields through plate are analyzed by using the coupled finite element and boundary element method. Some numerical simulations are performed on sound transmission through elastic plates. To investigate the effects of anisotropy and shape of distributed piezopolymer actuator, various kinds of distributed PVDF actuators are applied in sound control simulation for isotropic and anisotropic plates. The PVDF actuators applied are different from each other in their shapes and laminate angles. The results of control simulation show that the control effectiveness of distributed PYDF actuator can be enhanced by using the coupling between shape of actuator and vibration modes of structure and the anisotropy of piezoelectric properties of PVDF.

  • PDF

A 3D finite element static and free vibration analysis of magneto-electro-elastic beam

  • Vinyas., M;Kattimani, S.C.
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.465-485
    • /
    • 2017
  • In this paper, free vibration and static response of magneto-electro-elastic (MEE) beams has been investigated. To this end, a 3D finite element formulation has been derived by minimization the total potential energy and linear constitutive equation. The coupling between elastic, electric and magnetic fields can have a significant influence on the stiffness and in turn on the static behaviour of MEE beam. Further, different Barium Titanate ($BaTiO_3$) and Cobalt Ferric oxide ($CoFe_2O_4$) volume fractions results in indifferent coupled response. Therefore, through the numerical examples the influence of volume fractions and boundary conditions on the natural frequencies of MEE beam is illustrated. The study is extended to evaluate the static response of MEE beam under various forms of mechanical loading. It is seen from the numerical evaluation that the volume fractions, loading and boundary conditions have a significant effect on the structural behaviour of MEE structures. The observations made here may serve as benchmark solutions in the optimum design of MEE structures.

A Numerical Study on the Flow and Performance Characteristics of a Piezoelectric Micropump with Electromagnetic Resistance for Electrically Conducting Fluids (전자기 전항을 이용한 압전 구동방식 마이크로 펌프의 유동 및 성능 특성에 관한 수치해석적 연구)

  • An, Yong-Jun;Choi, Chung-Ryul;Kim, Chang-Nyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2788-2793
    • /
    • 2008
  • A numerical analysis has been conducted for flow characteristics and performance of a micropump with piezodisk and MHD(Magnetohydrodynamics) fluid. Various micro systems which could not be considered in the past have been recently growing with the development of MEMS(Micro Electro Mechanical System) and micro machining technology. Especially, micropumps, essential part of micro fluidic devices, are being lively studies by many researchers. In the present study, the piezo electric micropump with electromagnetic resistance for electrically conducting fluids is considered. The prescribed grid deformation method is used for the displacement of the membrane. The change of the performance of the micropump and flow characteristics of the electrically conducting fluid with the magnitude of the magnetic fields, duct size, the position of the inlet and outlet duct are investigated in the present study.

  • PDF

A general method for active surface adjustment of cable net structures with smart actuators

  • Wang, Zuowei;Li, Tuanjie
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.27-46
    • /
    • 2015
  • Active surface adjustment of cable net structures is becoming significant when large-size cable net structures are widely applied in various fields, especially in satellite antennas. A general-duty adjustment method based on active cables is proposed to achieve active surface adjustment or surface profile reconfiguration of cable net structures. Piezoelectric actuators and voice coil actuators are selected for constructing active cable structures and their simplified mechanical models are proposed. A bilevel optimization model of active surface adjustment is proposed based on the nonlinear static model established by the direct stiffness method. A pattern search algorithm combined with the trust region method is developed to solve this optimization problem. Numerical examples of a parabolic cable net reflector are analyzed and different distribution types of active cables are compared.

Multi-scale model for coupled piezoelectric-inelastic behavior

  • Moreno-Navarro, Pablo;Ibrahimbegovic, Adnan;Damjanovic, Dragan
    • Coupled systems mechanics
    • /
    • v.10 no.6
    • /
    • pp.521-544
    • /
    • 2021
  • In this work, we present the development of a 3D lattice-type model at microscale based upon the Voronoi-cell representation of material microstructure. This model can capture the coupling between mechanic and electric fields with non-linear constitutive behavior for both. More precisely, for electric part we consider the ferroelectric constitutive behavior with the possibility of domain switching polarization, which can be handled in the same fashion as deformation theory of plasticity. For mechanics part, we introduce the constitutive model of plasticity with the Armstrong-Frederick kinematic hardening. This model is used to simulate a complete coupling of the chosen electric and mechanics behavior with a multiscale approach implemented within the same computational architecture.

Multi-phase magneto-electro-elastic stability of nonlocal curved composite shells

  • Song, Yu;Xu, Jiangyang
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.775-785
    • /
    • 2021
  • Analysis of nonlinear stability behaviors of composite magneto-electro-elastic (MEE) nano-scale shells have been represented in this reaserch. The shell is assumed to be under a transverse mechanical load. Composite MEE material has been produced form piezoelectric and magnetic ingradients in which the material charactristics may be varied according to the percentages of the ingradients. The governing equations including scale effects have been developed in the framework of nonlocal elasticity. It has been demonstrated that nonlinear stability behaviors of MEE nano-sized shells in electrical-magnetic fields rely on the percentages of the ingradients. Also, the efficacy of nonlocality parameter, magnetic intensities and electrical voltages on stability loads of the nanoshells have been researched.

Effect of Electric Field Concentration by Electrode Patterning on the Incipient Piezoelectric Strain Properties of Lead-Free Piezoceramics

  • Kang, Woo-Seok;Hong, Chang-Hyo;Lee, Young-Jin;Choi, Gangho;Shin, Dong-Jin;Lim, Dong-Hwan;Jeong, Soon-Jong;Jo, Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.549-557
    • /
    • 2019
  • More than two decades of world-wide research efforts have resulted in several classes of potentially important materials. Among them are incipient piezoelectrics, which are especially useful for actuator applications. However, relatively large electric fields are required for activating the large incipient electromechanical strains. So far, many attempts have been made to reduce the required electric field by intentionally inhomogenizing the electric field distribution in the microstructure through core-shell and composite approaches. Here, we show that electric field concentration can be realized simply by adjusting electrode patterns. We have investigated the effect of electrode patterning on the incipient electromechanical strain properties of an exemplarily chosen lead-free relaxor system, revealing that electrode patterning does have a significant role on the strain properties of the given lead-free relaxor system. We believe that this approach would make a new strategy for ones to consider bringing the functional properties of electroceramics beyond their conventional limit.

Piezoelectric and Dielectric Properties on PSN-PMN-PZT Composition according to CeO2 Addition (PSN-PMN-PZT 조성의 CeO2첨가에 따른 압전.유전특성 변화)

  • Yoon, Man-Soon;Chio, Yong-Gil;Ur, Soon-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.838-842
    • /
    • 2006
  • 0.03Pb$(Sb_{0.5}Nb_{0.5})O_{3}-0.03Pb(Mn{1/3}Nb{2/3)O_{3}-(0.94-x)PbTiO_{3}-xPbZrO_{3}$ ceramics doped with $CeO_{2}$ were synthesized by conventional bulk ceramic processing technique. Phases analysis, microstructures and piezoelectric properties were investigated as a function of $CeO_{2}$ content (0.03, 0.05, 0.1 0.3, 0.5 and 0.7 wt%). Microstructures and phases information were characterized using a scanning electron microscope (SEM) and an X-ray diffractometer (XRD). Mechanical quality factor ($Q_{m}$) and coupling factor(kp) were obtained from the resonance measurement method. Both $Q_{m}$ and $k_{p}$ were shown to reach to the maximum at 0.1 wt% $CeO_{2}$. In order to evaluate the stability of resonance frequency and effective electromechanical coupling factor ($K_{eff}$) as a function of $CeO_{2}$, the variation of resonance and anti-resonance frequency were also measured using a high voltage frequency response analyzer under various alternating electric fields from 10 V/mm to 80 V/mm. It was shown that the stability of resonance frequency and effective electromechanical coupling factor were increased with increasing the $CeO_{2}$ contents.