• Title/Summary/Keyword: Piezoelectric characteristic

Search Result 175, Processing Time 0.032 seconds

Electrical Characteristics of Piezoelectric Transformer for Driving A 28W Fluorescent Lamp (28W(T5) 형광등 구동용 압전트랜스포머의 전기적 특성)

  • 류주현;황상모;윤광희;김종선;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.847-851
    • /
    • 2000
  • In this study, contour-vibration-mode Pb($Ni_{1/2}$,$W_{1/2}$)$O_3$-Pb(Zr,Ti)$O_3$ piezoelectric transformers for driving a 28W(T5) fluorescent lamp were fabricated to the modified filter structure with ring and dot electrodes which has been developed for application in 455kHz AM radios. The piezoelectric transformers were fabricated to the size of $31.5$\times$31.5$\times$2.5$mm^3$ with the variations of ring/dot electrode area ratio. Driving of piezoelectric transformer was carried out with input region for the ring electrode and output region for the dot electrode. The electrical properties and characteristic temperature rises caused by the vibration were measured at various load resistances. A 28 W fluorescent lamp, T5, was successfully driven by the fabricated transformer. The transformer with ring/dot electrode area ratio of 1.83 exhibited the best properties in terms of output power, efficiency and characteristic temperature rise, 30.95 W, 97.57% and8.3$^{\circ}C$ respectively.

  • PDF

Characteristics of the Radial Vibration of Cylindrical Piezoelectric Transducers (원통형 압전 변환기의 반경방향 고유진동 특성 연구)

  • 황교광;김진오
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.155-163
    • /
    • 2003
  • This paper presents the characteristics of the radial nitration of cylindrical piezoelectric transducers. The differential equations of piezoelectric radial motion have been derived in terms of the radial displacement and electric potential, which are functions of the radial and axial coordinates. Applying mechanical and electrical boundary conditions has yielded the characteristic equation of radial vibration. Numerical results of the natural frequencies have been compared with the experimental observations reported earlier for the transducers of several sizes, and have shown a good agreement for the fundamental mode. The paper discusses the dependence of the natural frequencies on the radius and thickness of the piezoelectric cylinders and the difference between Piezoelectric and elastic resonances.

Characteristics of the Radial Vibration of Cylindrical Piezoelectric Transducers (원통형 압전 변환기의 방사진동 특성 연구)

  • 황교광;김진오
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1202-1209
    • /
    • 2002
  • This paper presents the characteristics of the radial vibration of cylindrical piezoelectric transducers. The differential equations of piezoelectric radial motion have been derived in terms of the radial displacement and electric potential, which are functions of the radial and axial coordinates. Applying mechanical and electrical boundary conditions has yielded the characteristic equation of radial vibration. Numerical results of the natural frequencies have been compared with the experimental observations reported earlier for the transducers of several sizes, and have shown a good agreement for the fundamental mode. The paper discusses the dependence of the natural frequencies on the radius and thickness of the piezoelectric cylinders and the difference between Piezoelectric and elastic resonances

  • PDF

Variation in the Vibration Characteristics of a Piezoelectric Transducer due to Pre-pressure (예압에 따른 압전 변환기의 공진특성 변화)

  • Kim, Dae-Seung;Kim, Jin-Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.89-100
    • /
    • 2006
  • This paper presents an analytical approach to describe the variation in the vibration characteristics such as the natural frequency of a piezoelectric transducer under static pre-pressure. The transducer considered in this paper is a bolt-clamped Langevin-type transducer, which consists of a couple of piezoelectric discs, a couple of metal blocks for added mass effect, and a bolt to tighten them. A new analysis model for the transducer has been developed by taking into account the contact area between the piezoelectric ceramic disc and the metal block. The variation of the resonance frequency due to the pre-pressure has been calculated and compared with measured results reported earlier.

A Study on Generation Characteristics of Cireular Unimorph Type Piezoelectric Transducer (원판형 유니몰프타입 압전 트랜스듀서의 발전특성 연구)

  • Park, Choong-Hyo;Chong, Hyon-Ho;Jeoung, Sung-Su;Jun, Ho-Ik;Kim, Myung-Ho;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.13-15
    • /
    • 2010
  • On this paper, piezoelectric transducer was studied through direct piezoelectric effect. Circular unimorph type piezoelectric transducer is fabricated by attaching circular type PZT ceramic to circular plate of brass. The fabricated transducer was simulated and analyzed by using FEM program, ANSYS. Output characteristics were measured by applying diverse frequencies, including resonance frequency, of vibrator to transducer, and then the results were compared with ANSYS results. In addition, each characteristic was measured at two constraint conditions to obtain higher efficiency.

  • PDF

A study on the Characteristic of Piezoelectric Transformer for the Fluorescent Lamp ballast (형광등을 점타용 압전트랜스포머의 특성에 관한 연구)

  • 이용우;윤광희;류주현;서성제
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.621-625
    • /
    • 1999
  • Rosen type piezoelectric transformer for LCD backlight operated at high voltage and low current, may not be sucessfully used for illuminating general fluorescent lamps because low voltage and high current are required. In this study, the piezoelectric transformer with width vibration mode operated at low voyage and high current was designed for the application of fluorescent lasso ballast. The step-up ratio and efficiency as a function of the load resistance in the piezoelectric transformer indicated that the transformer can be effectively used for the electronic ballast for low profile fluorescent lamp.

  • PDF

Computational electromechanical approach for stability/instability of smart system actuated with piezoelectric NEMS

  • Luo, Zhonghua;Cheng, Xiaoling;Yang, Yuhan
    • Advances in Computational Design
    • /
    • v.7 no.3
    • /
    • pp.211-227
    • /
    • 2022
  • In this research, the size-dependent impact of an embedded piezoelectric nanoplate subjected to in-plane loading on free vibration characteristic is studied. The foundation is two-parameter viscoelastic. The nonlocal elasticity is employed in order to capture the influence of size of the plate. By utilizing Hamilton's principle as well as the first- order shear deformation theory, the governing equation and boundary conditions are achieved. Then, using Navier method the equations associated with the free vibration of a plate constructed piezoelectric material under in-plane loads are solved analytically. The presented formulation and solution procedure are validated using other papers. Also, the impacts of nonlocal parameter, mode number, constant of spring, electric potential, and geometry of the nanoplate on the vibrational frequency are examined. As this paper is the first research in which the vibration associated with piezoelectric nanoplate on the basis of FSDT and nonlocal elasticity is investigated analytically, this results can be used in future investigation in this area.

Numerical Analysis of Deformation Mode of Flexible Plate-Type Piezoelectric Module for Evaluating Characteristics of Electrical-Energy Generation (판형 압전 진동자의 굽힘변형 모드에 따른 전압발생 특성에 관한 해석적 연구)

  • Park, Jeong-Hyun;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.735-741
    • /
    • 2015
  • Piezoelectric materials are well-utilized for transforming mechanical vibrations into electrical energy that can be stored and used to power a diversity of devices. In this work, these materials have been studied to improve the efficiency of a piezoelectric system, whereby the shape and vibration mode of a piezoelectric module was changed. The basic shape of the piezoelectric module used in this work comprises a width of 10 mm, a length of 30 mm, and a thickness of 0.2 mm. The structural design of the piezoelectric module is optimized using a Taguchi method to increase the corresponding electrical-energy generation. The maximum terminal voltage was defined as a characteristic value to evaluate the optimal design parameters. Through this work, we propose an optimal structure with an eccentric and centric mass; furthermore, the voltage increase of approximately 26% was obtained by comparing a general plate-vibrating piezosystem with an optimal plate-vibrating piezosystem.

The Fabrication and Characteristics of microtransformer using PZT-based ceramics (PZT-마이크로 변압기 제작과 특성 분석)

  • 김철수;김성곤;박정호;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.149-152
    • /
    • 2001
  • A great deal of attention has been focused on the application of miniaturized piezoelectric transformers to the low power source for the microsystem. The dielectric and piezoelectric properties of Pb(Mn,W,Sb,Nb)O$_3$-Pb(Zr,Ti)O$_3$ ceramics have been investigated on different calcination(750$^{\circ}C$∼950$^{\circ}C$) and sintering(1100$^{\circ}C$∼1300$^{\circ}C$) temperatures. The perovskitic phase was formed by the solid phase reaction of the oxides. Anisotropic (k$\sub$t/k$\sub$p/) properties of electromechanical coupling coefficient and piezoelectric coefficient have been proven to be depending on processing temperatures. The value of electromechanical coupling factor of K$\sub$p/>0.51 and a mechanical quality factor of Q$\sub$m/>2000 were obtained. The piezoelectric transformer was prepared using this ceramics with the composition of Pb(Mn,W,Sb,Nb)O$_3$-Pb(Zr,Ti)O$_3$ We studied the influence of different processing temperature on the microstructure and piezoelectric properties of complex PZT-based ceramics. and the characteristic of piezoelectric transformer.

  • PDF

Piezoelectric and Dielectric Properties of Low Temperature Sintering PMN-PZN-PZT Ceramics according to the Milling Time (밀링 시간에 따른 저온소결 PMN-PZN-PZT 세라믹스의 압전 및 유전특성)

  • Yoo, Ju-Hyun;Lee, Il-Ha;Lee, Kab-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1039-1043
    • /
    • 2007
  • In this paper, in order to develop low temperature sintering ceramics for multilayer piezoelectric actuator application, PMN-PZN-PZT ceramics were fabricated using $LiCO_3,\;Bi_2O_3$ and CuO as sintering aids. And also, their piezoelectric and dielectric properties were investigated according to the milling time. All the specimens sintered at $930\;^{\circ}C$ showed tetragonal phases without secondary phases. With increasing milling time, piezoelectric and dielectric characteristic of specimens increased up to 60 hours milling time and then decreased due to the agglomeration of fine particle. Accordingly, it seems that 60 hour is optimum milling condition. At the sintering temperature of $930\;^{\circ}C$ and milling time of 60 hour, density, dielectric constant(${\varepsilon}_r$), electromechanical coupling factor (kp), mechanical quality factor (Qm), piezoelectric d constant showed the optimum value of $7.95\;g/m^3$, 1382, 0.546, 1749, 330 pC/N, respectively for multilayer piezoelectric actuator application.