• 제목/요약/키워드: Piezoelectric bimorph

검색결과 85건 처리시간 0.025초

Application of Vibration Characteristics of Piezoelectric Polymeric Materials -The Vibration Theory of Poly(Vinylidene Fluoride) Bimorph Cantilever Beam- (압전성 고분자 물질의 진동 특성 응용 -폴리비닐리덴플루오라이드 바이모드 외팔보 의 진동이론-)

  • 김진사
    • The Korean Journal of Rheology
    • /
    • 제3권2호
    • /
    • pp.156-165
    • /
    • 1991
  • 폴리비닐리덴플루오라이드 바이모프 외팔보(poly(vinylidene fluoride) bimorph cantilever beam)의 진동을 기술하는 수학적 모형을 세우고 실험으로 그모형의 타당성을 고 찰하였다. 여러 전압의 교류전류에 대해 여러 길이의 외팔보의 주파수응답을 측정하였고 여 러 전압의 직류전류에 대해 여러 길이의 외팔보의 처짐을 측정하였다. 실험으로부터 이 외 팔보의 진동은 점성감쇠보다는 구조감쇠로 기술하는 것이 더 타덩하고 외팔보가 전기장에 대해 damping factor가 일정해야 하나 각각의 normal mode에 대해 다른 damping factor로 수정하여 계산한이론치가 실험과 더 일치하였다. 공명주파수의 공명진폭을 예측할수 있고 넓은 입력주파수 영역에 대한 외팔보의 응답을 기술 할수 있으며 진동하는 외팔보는 모든위 치에서의 진폭을 기술할수 있다는 점에서 여기서의 모형은 Toda와 Smits의 모형들보다 우 수하다고 볼수 있다.

  • PDF

Bender Typed Piezoelectric Multilayer Actuator

  • Ahn, Byung-Guk;Lee, Dong-Kyun;Han, Deuk-Young;Kang, Chong-Yoon;Park, Ji-Won;Kim, Hyun-Jai;Yoon, Seok-Jin
    • Journal of the Korean Ceramic Society
    • /
    • 제40권3호
    • /
    • pp.225-228
    • /
    • 2003
  • A Bender typed Multilayer Actuator(BMA) for decreasing the depolarization effect was designed and fabricated. Unlike bimorph and multimorph actuators in which depolarization occurred, the BMA did not generate depolarization because the polarization and the electric field directions are the same. The simulated results indicate that higher displacement of the BMA can be achieved by increasing input voltage. Compared with the multimorph actuator, the proposed actuator is expected to extend a life time as well as acceptable voltage range.

Piezoelectric Energy Harvesting Systems using Bimorph Actuator (바이몰프 액츄에이터를 사용한 압전에너지 발전 시스템)

  • Kim, Chang-Il;Lim, Eun-Kyeong;Paik, Jong-Hoo;Lim, Jong-In;Lee, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.190-191
    • /
    • 2006
  • 본 연구에서는 압전 세라믹을 이용한 Piezoelectric Energy Harvesting Systems을 개발하기 위해서, 바이몰프 액츄에이터를 제작하여 구동속도에 따른 발전특성을 고찰하였다. 또한 발전 회로시스템을 설계하여 압전소자에 의한 발전특성을 분석하였다. 본 시스템을 통해서 에 1.3 mm(100 V 인가)의 대변위 바이몰프 액츄에이터를 제작하였으며, 이런 액츄에이터를 이용하여 60 mW급의 LED를 구동하였다.

  • PDF

Static analysis of rubber components with piezoelectric patches using nonlinear finite element

  • Manna, M.C.;Sheikh, A.H.;Bhattacharyya, R.
    • Smart Structures and Systems
    • /
    • 제5권1호
    • /
    • pp.23-42
    • /
    • 2009
  • In order to reduce vibration or to control shape of structures made of metal or composites, piezoelectric materials have been extensively used since their discovery in 1880's. A recent trend is also seen to apply piezoelectric materials to flexible structures made of rubber-like materials. In this paper a non-linear finite element model using updated Lagrangian (UL) approach has been developed for static analysis of rubber-elastic material with surface-bonded piezoelectric patches. A compressible stain energy function has been used for modeling the rubber as hyperelastic material. For formulation of the nonlinear finite element model a twenty-node brick element is used. Four degrees of freedom u, v and w and electrical potential ${\varphi}$ per node are considered as the field variables. PVDF (polyvinylidene fluoride) patches are applied as sensors/actuators or sensors and actuators. The present model has been applied to bimorph PVDF cantilever beam to validate the formulation. It is then applied to study the smart rubber components under different boundary and loading conditions. The results predicted by the present formulation are compared with the analytical solutions as well as the available published results. Some results are given as new ones as no published solutions available in the literatures to the best of the authors' knowledge.

Micro Valve with Functional Actuator (기능성 액츄에이터를 이용한 마이크로 밸브)

  • Yun, So-Nam;Ham, Young-Bog;Lee, Kyung-Woo;Kanda, Kunio
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.951-955
    • /
    • 2004
  • Piezoelectric(PZT) actuator can substitute for solenoid which is used in fluid control field because it has faster response times and no possibility of explosion. Besides, it is available in a high temperature and it has low energy consumption. In this study, pneumatic micro valve, bimorph type PZT actuator using the softner type PZT, carbon plate as a shim and its controller circuit were suggested and investigated. Performance tests and characteristics analysis, such as displacement, force, hysteresis and frequency properties, were carried out. The displacement of the actuator measured at the end point was 63 ${\mu}m$., force of the actuator was 0.052 N and maximum operating frequency was 15Hz. Also, characteristics of the micro valve with PZT actuator were evaluated in a testing system. The results show that the suggested PZT actuator is suitable for micro valve.

  • PDF

Vibration and precision position control of dual actuators with parallel type piezoactuator (이단 압전 구동기를 가진 이중 구동기의 진동 및 정밀위치제어)

  • Lee, Yong-Gwon;Cho, Won-Ik;Yang, Hyun-Suk;Park, Young-Pil
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.475-480
    • /
    • 2000
  • A new positioning mechanism with Parallel type actuator using piezoelectric material and with dual type actuators using voice coil motor (VCM) and piezoactuator is proposed for optical disk drive or near-field recording type drive, and high speed position and vibration control are investigated. Parallel type bimorph piezoactuator is used as a fine motion actuator with self-sensing technique, which allows a piezoelectric material to concurrently sense and actuate in a closed loop frame work, and positive position feedback control algorithm is adopted to further control residual vibration. For positioning control of VCM, PID control algorithm is adopted.

  • PDF

Position Control of Piezoelectric Flexible Arm Using Fuzzy Algorithms (퍼지이론을 이용한 압전소자 플렉시블암의 위치제어)

  • 류재춘;박종국
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.176-179
    • /
    • 1996
  • This paper describes the tip displacement of a flexible miniature arm controlled by the piezoelectric bimorph cells cemented on the surface of the arm. The arm is driven by the torques generated by the cells, and the endpoiht of the arm is controlled so that it moves in synchrony with the fluctuation of the target and maintains a constant distance to the surface of the traget. The voltage applied to the cells is controlled by a feedback signal composed of the tip displacement and the velocity. A theoretical solution is obtained by considering the cell-arm system as a stepped beam and applying time-discrete method to the governing equations of the system. The results are good agreement for a wide range of physical paramehers involved.

  • PDF

Performance analysis of composite piezoceramic actuator by assumed strain elements (가정 변형률 요소를 이용한 복합재 압전작동기의 작동특성해석)

  • 김영성;이상기;박훈철;윤광준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.461-469
    • /
    • 2002
  • This paper deals with a fully coupled piezoelectric-mechanical assumed strain solid element that can be used for geometric and material nonlinear modeling of thin piezoelectric actuators. Since the assumed strain solid element can alleviate locking, the element is suitable for performance analysis of very thin actuators without locking. A finite element code is developed based on the finite element formulation and validated by solving typical numerical examples such as bimorph and unimorph beams. Using thecode, we have conducted performance analysis for LIPCA actuator. The estimated actuation displacement of LIPCA agrees well with experimental data under low prescribed voltage.

  • PDF

Modeling on Structural Control of a Laminated Composite Plate with Piezoelectric Sensor/Actuators (압전재료를 이용한 복합적층판의 구조제어에 관한 모델링)

  • 황우석;황운봉;한경섭;박현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제17권1호
    • /
    • pp.90-100
    • /
    • 1993
  • A finite element formulation of vibration control of a laminated plate with piezoelectric sensor/ actuators is presented. Classical lamination theory with the induced strain actuation and Hamilton's principle are used to formulate the equations of motion of the system. The total charge developed on the sensor layer is calculated from the direct piezoelectric equation. The equations of motion and the total charge are discretized with 4 node, 12 degrees of freedom quadrilateral plate bending elements with one electrical degree of freedom. The mass and stiffness of the piezoelectric layer are introduced by treating them as another layer in laminated plate. Piezoelectric sensor/actuators are distributed, but discrete due to the geometry of electrodes. By defining an i.d. number of electrode for each element, modelling of electrodes with variable geometry can be achieved. The static response of a piezoelectric bimorph beam to electrical loading and sensor voltage to given displacement are calculated. For a laminated plate under the negative velocity feedback control, the direct time response by the Newmark-.betha. method and damped frequencies and modal damping ratios by modal state space analysis are derived.

Finite element analysis of the PZT 3203HD bimorph beam actuator based on material non-linear characteristics (박막형 압전재료 3203HD의 재료 비선형성을 고려한 바이모프 보 작동기의 비선형 유한 요소해석)

  • Jang, Sung-Hoon;Kim, Young-Sung;Lee, Sang-Ki;Park, Hoon-Cheol;Yoon, Kwang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제32권4호
    • /
    • pp.18-23
    • /
    • 2004
  • In this paper, material non-linear behavior of PZT wafer(3203HD, CTS) under high electric field and stress is experimentally investigated and the non-linearity of the PZT wafer is numerically simulated. Empirical functions that can represent the non-linear behavior of the PZT wafer have been extracted based on the measured piezo-strain under stress. The functions are implemented in an incremental finite element formulation for material non-linear analysis. New definition of the piezoelectric constant and the incremental strain are incorporated into the finite element formulation for a better reproduction of the non-linear behavior. With the new definition of the in incremental piero-strain the measured non-linear behavior of the PZT wafer has been accurately reproduced even for high electric field. For validation of the measured non-linear characteristics and the proposed approach, a PZT bimorph beam actuator has been numerically and experimentally tested. The predicted actuation displacement, based on the material nonlinear finite element analysis, showed a good agreement with the measured one.