• Title/Summary/Keyword: Piezoelectric Voltage

Search Result 645, Processing Time 0.031 seconds

Modelling and experimental investigations on stepped beam with cavity for energy harvesting

  • Reddya, A. Rami;Umapathy, M.;Ezhilarasib, D.;Uma, G.
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.623-640
    • /
    • 2015
  • This paper presents techniques to harvest higher voltage from piezoelectric cantilever energy harvester by structural alteration. Three different energy harvesting structures are considered namely, stepped cantilever beam, stepped cantilever beam with rectangular and trapezoidal cavity. The analytical model of three energy harvesting structures are developed using Euler-Bernoulli beam theory. The thickness, position of the rectangular cavity and the taper angle of the trapezoidal cavity is found to shift the neutral axis away from the surface of the piezoelectric element which in turn increases the generated voltage. The performance of the energy harvesters is evaluated experimentally and is compared with regular piezoelectric cantilever energy harvester. The analytical and experimental investigations reveal that, the proposed energy harvesting structures generate higher output voltage as compared to the regular piezoelectric cantilever energy harvesting structure. This work suggests that through simple structural modifications higher energy can be harvested from the widely reported piezoelectric cantilever energy harvester.

The compact size piezoelectric transformer to lower an operating voltage of plasma display devices

  • Choi, Chung-Sock;Ahn, Sung-Il;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.719-720
    • /
    • 2009
  • We suggest a new approach to lower the operating voltage of plasma display devices using a piezoelectric transformer (PT). $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ (PMNT) was used as a piezoelectric material. The Rosen-type PT, with a compact size of 10 mm ${\times}$ 20 mm ${\times}$ 0.3 mm, was fabricated on a glass substrate. The fabricated PT was operated as a half-wave vibration mode at around 80~90 kHz. The maximum voltage step-up ratio was 3 at 87.8 kHz when the input voltage was 10.32 V (peak-to-peak).

  • PDF

Electrical properties of multilayer piezoelectric transformer (적층압전변압기의 전기적 특성)

  • 정수태;조상희
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.138-145
    • /
    • 1996
  • A multilayer piezoelectric transformer (MPT) which generates a high voltage dc power with low driving voltage and high voltage setup ratio was made by the tape casting method. The measured electrical characteristics of the MPT agreed with the results simulated from the equivalent circuit of the MPT. With increasing the number of layer in the MPT, the resonance curve of the input cur-rent revealed an asymmetry due to the increasing input capacitance, while that of output dc voltages revealed symmetry. The MPT which has very thin layer was excellently characterized as low driving voltage and high voltage setup ratio. The output dc voltage is nonlinearly influenced by the number of layer in the MPT.

  • PDF

Resonance characteristics and electrical properties of PZT-piezoelectric transformer (PZT계 압전변압기의 공진특성과 전기적 성질)

  • 박순태;정수태;이종헌
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.27-34
    • /
    • 1995
  • The analysis of nonlinear equivalent circuit and the resonance characteristics of input current and output voltage were simulated, and their electrical properties are discussed in the transverse-type piezoelectric ceramic transformer. The nonlinear resonance characteristics of input current and output voltage showed by the thermal effect due to a higher driving current, the nonlinearity increased greatly as driving current increased. When load resistor was 100[M.ohm.], the nonlinear coefficient was -1.3. The nonlinear resonance curve of input current and output voltage for a variation of input voltage and load resistor agreed with the discussed theory. The output voltage increased nearly proportioned to input voltage when load resistors were below 50[M.ohm.], the voltage step-up ratio decreased when a load resistor was 100[M.ohm.] and their maximum value was 950.

  • PDF

Fiber optic voltage sensor using piezoelectric material (압전소자를 이용한 광섬유 전압센서)

  • Jun, Jin-Woo;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1874-1876
    • /
    • 1997
  • A fiber optic voltage sensor using photoelastic effect of a single-mode optical fiber, excited with a 632.8 nm He-Ne laser, is developed. The photoelastic effect is produced by piezoelectric effect for the voltage measurement. It is found that the detector output voltage is proportional to the applied voltage. Also, the frequency of the output voltage is equal to that of the applied voltage. Experimental results from a laboratory model demonstrate the feasibility of the sensor for field application in high-voltage systems.

  • PDF

Optimal placement of piezoelectric curve beams in structural shape control

  • Wang, Jian;Zhao, Guozhong;Zhang, Hongwu
    • Smart Structures and Systems
    • /
    • v.5 no.3
    • /
    • pp.241-260
    • /
    • 2009
  • Shape control of flexible structures using piezoelectric materials has attracted much attention due to its wide applications in controllable systems such as space and aeronautical engineering. The major work in the field is to find a best control voltage or an optimal placement of the piezoelectric actuators in order to actuate the structure shape as close as possible to the desired one. The current research focus on the investigation of static shape control of intelligent shells using spatially distributed piezoelectric curve beam actuators. The finite element formulation of the piezoelectric model is briefly described. The piezoelectric curve beam element is then integrated into a collocated host shell element by using nodal displacement constraint equations. The linear least square method (LLSM) is employed to get the optimum voltage distributions in the control system so that the desired structure shape can be well matched. Furthermore, to find the optimal placement of the piezoelectric curve beam actuators, a genetic algorithm (GA) is introduced in the computation model as well as the consideration of the different objective functions. Numerical results are given to demonstrate the validity of the theoretical model and numerical algorithm developed.

Characteristics of Piezoelectric Transformer Using PMS-PZT, PMN-PZT Ceramics (PMS-PZT, PMN-PZT계 세라믹스를 이용한 압전변압기의 특성)

  • 이동균;안형근;한득영;윤석진;김현재
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.3
    • /
    • pp.220-226
    • /
    • 2000
  • The piezoelectric material for piezoelectric transformer needs the high electromechanical coupling factor( $k_{p}$) the piezoelectric constant( $d_{33}$) and the mechanical quality factor( $Q_{m}$)in order to obtain high voltage step-up ratio and low temperature rising. In this study the piezoelectric transformers were fabricated using Pb[$Zr_{0.45}$/ $Ti_{0}$48//L $u_{0.02}$(M $n_{1}$3//S $b_{2}$3/)$_{0.05}$$O_3$(PMS-PZT) and Pb[Z $r_{0.25}$/ $Ti_{0.375}$(M $g_{1}$3//N $b_{2}$3/)$_{0.375}$$O_3$+0.5wt%Mn $O_2$(PMN-PZT) ceramics. The piezoelectric properties of PMS-PZT and PMN-PZT were measured. The voltage set-up ratios of the piezoelectric transformers using PMS-PZT and PMN-PZT were the value of 15, 20 respectively under 100$_{KΩ}$ in Rosen type transformer.r.ormer.r.r.r.r.r.r.

  • PDF

A Development of Micro-Positioning Grinding Table using Piezoelectric Voltage Feedback (압전전압 궤환에 의한 미세구동 연삭테이블의 개발)

  • Nam, Soo-Ryong;Kim, Jeong-Du
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.48-58
    • /
    • 1995
  • A micro positioning system using piezoelectric actuators have very wide application region such as ultra-precision machine tool, optical device, measurement systen. In order ro keep a high precision displacement resolution, they use a position sensor and feedback the error. From the practical point of view, a high-resolution displacement sensor system are very expensive and difficult to guarantee such sensitive sensors work properly in the hard opera- tion environment of industry. In this study, a micro-positioning grinding table which does not require position sensor but uses piezoelectric voltage feedback, has been developed. It is driven by hystersis-considering reference input voltage which calculated from computer and then uses actuator/sensor characteristics of piezoelectric materials. From the result of experiments we proved a fast and stable response of micro-positioning system and suggested efficient technique to control the piezoelectric actuator. And through grinding experiments, it is revealed that a characteristics of ground surfaces transient to plastic deformation as extremely small depth of grinding.

  • PDF

Characterization of Nanoscale Electroactive Polymers via Piezoelectric Force Microscopy

  • Lee, Su-Bong;Ji, Seungmuk;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.232.2-232.2
    • /
    • 2015
  • Piezoelectric force microscopy (PFM) is a powerful method to characterize inversed piezoelectric effects directly using conductive atomic force microscopy (AFM) tips. Piezoelectric domains respond to an applied AC voltage with a characteristic strain via a contact between the tip and the surface of piezoelectric material. Electroactive piezoelectric polymers are widely investigated due to their advantages such as flexibility, light weight, and microactuation enabling various device features. Although piezoelectric polymers are promising materials for wide applications, they have the primary issue that the piezoelectric coefficient is much lower than that of piezoelectric ceramics. Researchers are studying widely to enhance the piezoelectric coefficient of the materials including nanoscale fabrication and copolymerization with some materials. In this report, nanoscale electroactive polymers are prepared by the electrospinning method that provides advantages of direct poling, scalability, and easy control. The main parameters of the electrospinning process such as distance, bias voltage, viscosity of the solution, and elasticity affects the piezoelectric coefficient and the nanoscale structures which are related to the phase of piezoelectric polymers. The characterization of such electroactive polymers are conducted using piezoelectric force microscopy (PFM). Their morphologies are characterized by field emission-scanning electron microscope (FE-SEM) and the crystallinity of the polymer is determined by X-ray diffractometer.

  • PDF

Numerical investigation on scale-dependent vibrations of porous foam plates under dynamic loads

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Fatima, Fatima Masood
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.2
    • /
    • pp.85-107
    • /
    • 2020
  • Dynamic responses of porous piezoelectric and metal foam nano-size plates have been examined via a four variables plate formulation. Diverse pore dispersions named uniform, symmetric and asymmetric have been selected. The piezoelectric nano-size plate is subjected to an external electrical voltage. Nonlocal strain gradient theory (NSGT) which includes two scale factors has been utilized to provide size-dependent model of foam nanoplate. The presented plate formulation verifies the shear deformations impacts and it gives fewer number of field components compared to first-order plate model. Hamilton's principle has been utilized for deriving the governing equations. Achieved results by differential quadrature (DQ) method have been verified with those reported in previous studies. The influences of nonlocal factor, strain gradients, electrical voltage, dynamical load frequency and pore type on forced responses of metal and piezoelectric foam nano-size plates have been researched.