• Title/Summary/Keyword: Piezoelectric Smart Structures

Search Result 258, Processing Time 0.023 seconds

Damage observability, localization and assessment based on eigenfrequencies and eigenvectors curvatures

  • Ciambella, Jacopo;Vestroni, Fabrizio;Vidoli, Stefano
    • Smart Structures and Systems
    • /
    • v.8 no.2
    • /
    • pp.191-204
    • /
    • 2011
  • A technique for damage localization and assessment based on measurements of both eigenvectors curvatures and eigenfrequencies is proposed. The procedure is based on two successive steps: a model independent localization, based on changes of modal curvatures, and the solution of a one-dimensional minimization problem to evaluate damage intensity. The observability properties of damage parameters is discussed and, accordingly, a suitable change of coordinates is introduced. The proposed technique is illustrated with reference to a cantilever Euler beam endowed with a set of piezoelectric transducers. To assess the robustness of the algorithm, a parametric study of the identification errors with respect to the number of transducers and to the number of considered modal quantities is carried out with both clean and noise-corrupted data.

Variable properties thermopiezoelectric problem under fractional thermoelasticity

  • Ma, Yongbin;Cao, Liuchan;He, Tianhu
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.163-170
    • /
    • 2018
  • The dynamic response of a finite length thermo-piezoelectric rod with variable material properties is investigated in the context of the fractional order theory of thermoelasticity. The rod is subjected to a moving heat source and fixed at both ends. The governing equations are formulated and then solved by means of Laplace transform together with its numerical inversion. The results of the non-dimensional temperature, displacement and stress in the rod are obtained and illustrated graphically. Meanwhile, the effects of the fractional order parameter, the velocity of heat source and the variable material properties on the variations of the considered variables are presented, and the results show that they significantly influence the variations of the considered variables.

Novel design of interdigitated electrodes for piezoelectric transducers

  • Jemai, Ahmed;Najar, Fehmi
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.369-382
    • /
    • 2018
  • Novel design of interdigitated electrodes capable of increasing the performance of piezoelectric transducers are proposed. The new electrodes' geometry improve the electromechanical coupling by offering an enhanced adaptation of the electric field to the interdigitated electrode configuration. The proposed analysis is based on finite element modeling and takes into account local polarization effect. It is shown that the proposed electrodes considerably increase the strain generation compared to flat electrode arrangement used for Macro Fiber Composite (MFC) and Active Fiber Composite (AFC) actuators. Also, electric field singularities are reduced allowing better reliability of the transducer against electric failure.

Active vibration control of nonlinear stiffened FG cylindrical shell under periodic loads

  • Ahmadi, Habib;Foroutan, Kamran
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.643-655
    • /
    • 2020
  • Active control of nonlinear vibration of stiffened functionally graded (SFG) cylindrical shell is studied in this paper. The system is subjected to axial and transverse periodic loads in the presence of thermal uncertainty. The material composition is considered to be continuously graded in the thickness direction, also these properties depend on temperature. The relations of strain-displacement are derived based on the classical shell theory and the von Kármán equations. For modeling the stiffeners on the cylindrical shell surface, the smeared stiffener technique is used. The Galerkin method is used to discretize the partial differential equations of motion. Some comparisons are made to validate the SFG model. For suppression of the nonlinear vibration, the linear and nonlinear control strategies are applied. For control objectives, the piezoelectric actuator is attached to the external surface of the shell and the thin ring piezoelectric sensor is attached to the middle internal surface of shell. The effect of PID, feedback linearization and sliding mode control on the suppression of vibration for SFG cylindrical shell is presented.

An exploratory study of stress wave communication in concrete structures

  • Ji, Qing;Ho, Michael;Zheng, Rong;Ding, Zhi;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.135-150
    • /
    • 2015
  • Large concrete structures are prone to cracks and damages over time from human usage, weathers, and other environmental attacks such as flood, earthquakes, and hurricanes. The health of the concrete structures should be monitored regularly to ensure safety. A reliable method of real time communications can facilitate more frequent structural health monitoring (SHM) updates from hard to reach positions, enabling crack detections of embedded concrete structures as they occur to avoid catastrophic failures. By implementing an unconventional mode of communication that utilizes guided stress waves traveling along the concrete structure itself, we may be able to free structural health monitoring from costly (re-)installation of communication wires. In stress-wave communications, piezoelectric transducers can act as actuators and sensors to send and receive modulated signals carrying concrete status information. The new generation of lead zirconate titanate (PZT) based smart aggregates cause multipath propagation in the homogeneous concrete channel, which presents both an opportunity and a challenge for multiple sensors communication. We propose a time reversal based pulse position modulation (TR-PPM) communication for stress wave communication within the concrete structure to combat multipath channel dispersion. Experimental results demonstrate successful transmission and recovery of TR-PPM using stress waves. Compared with PPM, we can achieve higher data rate and longer link distance via TR-PPM. Furthermore, TR-PPM remains effective under low signal-to-noise (SNR) ratio. This work also lays the foundation for implementing multiple-input multiple-output (MIMO) stress wave communication networks in concrete channels.

Dynamic displacement tracking of a one-storey frame structure using patch actuator networks: Analytical plate solution and FE validation

  • Huber, Daniel;Krommer, Michael;Irschik, Hans
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.613-632
    • /
    • 2009
  • The present paper is concerned with the design of a proper patch actuator network in order to track a desired displacement of the sidewalls of a one-storey frame structure; both, for the static and the dynamic case. Weights for each patch of the actuator network found in our previous work were based on beam theory; in the present paper a refinement of these weights by modeling the sidewalls of the frame structure as thin plates is presented. For the sake of calculating the refined weights approximate solutions of the plate equations are calculated by an extended Galerkin method. The solutions based on the analytical plate model are compared with three-dimensional Finite Element results computed in the commercially available code ANSYS. The patch actuator network is put into practice by means of four piezoelectric patches attached to each of the two sidewalls of the frame structures, to which electric voltages proportional to the analytically refined patch weights are applied. Analytical and numerical results coincide very well over a broad frequency range.

Design and evaluation of an experimental system for monitoring the mechanical response of piezoelectric energy harvesters

  • Kim, Changho;Ko, Youngsu;Kim, Taemin;Yoo, Chan-Sei;Choi, BeomJin;Han, Seung Ho;Jang, YongHo;Kim, Youngho;Kim, Namsu
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.133-137
    • /
    • 2018
  • Increasing interest in prognostics and health management has heightened the need for wireless sensor networks (WSN) with efficient power sources. Piezoelectric energy harvesters using Pb(Zr,Ti)O3 (PZT) are one of the candidate power sources for WSNs as they efficiently convert mechanical vibration energy into electrical energy. These types of devices are resonated at a specific frequency, which has a significant impact on the amount of energy harvested, by external vibration. Hence, precise prediction of mechanical deformation including modal analysis of piezoelectric devices is crucial for estimating the energy generated under specific conditions. In this study, an experimental vibrational system capable of controlling a wide range of frequencies and accelerations was designed to generate mechanical vibration for piezoelectric energy harvesters. In conjunction with MATLAB, the system automatically finds the resonance frequency of harvesters. A small accelerometer and non-contact laser displacement sensor are employed to investigate the mechanical deformation of harvesters. Mechanical deformation under various frequencies and accelerations were investigated and analyzed based on data from two types of sensors. The results verify that the proposed system can be employed to carry out vibration experiments for piezoelectric harvesters and measurement of their mechanical deformation.

Stochastic hygrothermoelectromechanical loaded post buckling analysis of piezoelectric laminated cylindrical shell panel

  • Lal, Achchhe;Saidane, Nitesh;Singh, B.N.
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.505-534
    • /
    • 2012
  • The present work deals with second order statistics of post buckling response of piezoelectric laminated composite cylindrical shell panel subjected to hygro-thermo-electro-mechanical loading with random system properties. System parameters such as the material properties, thermal expansion coefficients and lamina plate thickness are assumed to be independent of the temperature and electric field and modeled as random variables. The piezoelectric material is used in the forms of layers surface bonded on the layers of laminated composite shell panel. The mathematical formulation is based on higher order shear deformation shell theory (HSDT) with von-Karman nonlinear kinematics. A efficient $C^0$ nonlinear finite element method based on direct iterative procedure in conjunction with a first order perturbation approach (FOPT) is developed for the implementation of the proposed problems in random environment and is employed to evaluate the second order statistics (mean and variance) of the post buckling load of piezoelectric laminated cylindrical shell panel. Typical numerical results are presented to examine the effect of various environmental conditions, amplitude ratios, electrical voltages, panel side to thickness ratios, aspect ratios, boundary conditions, curvature to side ratios, lamination schemes and types of loadings with random system properties. It is observed that the piezoelectric effect has a significant influence on the stochastic post buckling response of composite shell panel under various loading conditions and some new results are presented to demonstrate the applications of present work. The results obtained using the present solution approach is validated with those results available in the literature and also with independent Monte Carlo Simulation (MCS).

Dynamic behavior of piezoelectric bimorph beams with a delamination zone

  • Zemirline, Adel;Ouali, Mohammed;Mahieddine, Ali
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.759-776
    • /
    • 2015
  • The First Order Shear Deformation Theory (FOSDT) is considered to study the dynamic behavior of a bimorph beam. A delamination zone between the upper and the lower layer has been taken into consideration; the beam is discretised using the finite elements method (FEM). Several parameters are taken into consideration like structural damping, the geometry, the load nature and the configurations of the boundary conditions. Results show that the delamination between the upper and the lower layer affects considerably the actuation.

Assessment of temperature effect in structural health monitoring with piezoelectric wafer active sensors

  • Kamas, Tuncay;Poddar, Banibrata;Lin, Bin;Yu, Lingyu
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.835-851
    • /
    • 2015
  • This paper presents theoretical and experimental evaluation of the structural health monitoring (SHM) capability of piezoelectric wafer active sensors (PWAS) at elevated temperatures. This is important because the technologies for structural sensing and monitoring need to account for the thermal effect and compensate for it. Permanently installed PWAS transducers have been One of the extensively employed sensor technologies for in-situ continuous SHM. In this paper, the electro-mechanical impedance spectroscopy (EMIS) method has been utilized as a dynamic descriptor of PWAS behavior and as a high frequency standing wave local modal technique. Another SHM technology utilizes PWAS as far-field transient transducers to excite and detect guided waves propagating through the structure. This paper first presents how the EMIS method is used to qualify and quantify circular PWAS resonators in an increasing temperature environment up to 230 deg C. The piezoelectric material degradation with temperature was investigated and trends of variation with temperature were deduced from experimental measurements. These effects were introduced in a wave propagation simulation software called Wave Form Revealer (WFR). The thermal effects on the substrate material were also considered. Thus, the changes in the propagating guided wave signal at various temperatures could be simulated. The paper ends with summary and conclusions followed by suggestions for further work.