• Title/Summary/Keyword: Piezoelectric Materials

Search Result 927, Processing Time 0.026 seconds

Optimal Friction Materials of Tiny Piezoelectric Ultrasonic Linear Motor

  • Lee, Kyong-Jae;Nahm, Sahn;Kang, Jin-Kyu;Ko, Hyun-Phill;Kang, Chong-Yun;Kim, Hyun-Jae;Yoon, Seok-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.249-255
    • /
    • 2005
  • In recent years, a novel tiny piezoelectric linear motor converting a radial mode vibration to a longitudinal mode vibration driven by the impact force has been developed for a camera optical module. The tiny piezoelectric motor is consisted of a shaft, mobile element, and piezoelectric transducer. In this work, the frictional coefficient and static friction force of the interface between the shaft and the mobile element have been investigated according to their respective materials. It was found that two combinations, namely Pyrex glass or stainless steel for the shaft and stainless steel (SUS) for the mobile element, exhibited good dynamic behaviors in the tiny ultrasonic linear motor, which was newly developed based on operating concepts based on Newton's law.

Effect of Microstructure on Piezoelectric Properties and TCC Behavior in PZT-PZN Ceramics (PZT-PZN 세라믹의 미세구조가 압전 특성 및 TCC 거동에 미치는 영향)

  • Seo, Intae;Choi, Yongsu;Cho, Yuri;Kang, Hyung-Won;Kim, Kang San;Cheon, Chae Il;Han, Seung Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.445-451
    • /
    • 2022
  • Ultrasonic sensor is suitable as a next-generation autonomous driving assist device because its lower price compared to that of other sensors and its sensing stability in the external environment. Although Pb(Zr, Ti)O3 (PZT)-relaxor ferroelectric system has excellent piezoelectric properties, the change in capacitance is large in the daily operating temperature range due to the low phase transition temperature. Recently, many studies have been conducted to improve the temperature stability of ferroelectric ceramics by controlling the grain size and crystal structure, so it is necessary to study the effect of the grain size on the piezoelectric properties and the temperature stability of PZT-relaxor ferroelectric system. In this study, the piezoelectric properties, phase transition temperature, and temperature coefficient of capacitance (TCC) of 0.9 Pb(Zr1-xTix)O3-0.1 Pb(Zn1/3Nb2/3)O3 (PZTx-PZN) ceramics with various grain sizes were investigated. PZTx-PZN ceramics with larger grain size showed higher piezoelectric properties and temperature stability, and are expected to be suitable for ultrasonic devices in the future.

Perspective on Ferroelectric Polymers Presenting Negative Longitudinal Piezoelectric Coefficient and Morphotropic Phase Boundary (강유전체 고분자의 음의 압전 물성 및 상공존경계(MPB)에 대한 고찰)

  • Im, Sungbin;Bu, Sang Don;Jeong, Chang Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.523-546
    • /
    • 2022
  • Morphotropic phase boundary (MPB), which is a special boundary that separates two or multiple different phases in the phase diagram of some ferroelectric ceramics, is an important concept in identifying physics that includes piezoelectric responses. MPB, which had not been discovered in organic materials until recently, was discovered in poly(vinylidene fluoride-co-trifluoroethylene (P(VDF-TrFE)), resulting from a molecular approach. The piezoelectric coefficient of P(VDF-TrFE) in this MPB region was achieved up to -63.5 pC N-1, which is about two times as large as the conventional value of -30 pC N-1 of P(VDF-TrFE). An order-disorder arrangement greatly affects the rise of the piezoelectric effect and the ferroelectric, paraelectric and relaxor ferroelectric of P(VDF-TrFE), so the arrangement and shape of the polymer chain is important. In this review, we investigate the origin of negative longitudinal piezoelectric coefficients of piezoelectric polymers, which is definitely opposite to those of common piezoelectric ceramics. In addition to the mainly discussed issue about MPB behaviors of ferroelectric polymers, we also introduce the consideration about polymer chirality resulting in relaxor ferroelectric properties. When the physics of ferroelectric polymers is unveiled, we can improve the piezoelectric and pyroelectric properties of ferroelectric polymers and contribute to the development of next-generation sensor, energy, transducer and actuator applications.

Dielectric and Piezoelectric Properties of "Lead-free" Piezoelectric Rhombohedral Ba(Ti0.92Zr0.08)O3 Single Crystals

  • Lee, Jong-Yeb;Oh, Hyun-Taek;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.171-177
    • /
    • 2016
  • Rhombohedral $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals are fabricated using the cost-effective solid-state single crystal growth (SSCG) method; their dielectric and piezoelectric properties are also characterized. Measurements show that (001) $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals have an electromechanical coupling factor ($k_{33}$) higher than 0.85, piezoelectric charge constant ($d_{33}$) of about 950 [pC/N], and piezoelectric voltage constant ($g_{33}$) higher than 40 [${\times}10^{-3}Vm/N$]. Especially the $d_{33}$ of (001) $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals was by about six times higher than that of their ceramics. Because their electromechanical coupling factor ($k_{33}$) and piezoelectric voltage constant ($d_{33}$, $g_{33}$) are higher than those of soft PZT ceramics, it is expected that rhombohedral (001) $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals can be used as "lead-free" piezoelectric materials in many piezoelectric applications such as actuator, sensor, and transducer.

Design and Analysis of Piezoelectric Energy Harvesting Device Using Waves (파도를 이용한 압전 에너지 수확 장치의 설계 및 해석)

  • Na, Yeong-min;Lee, Hyun-seok;Kang, Tae-hun;Park, Jong-kyu;Park, Tae-gone
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.523-530
    • /
    • 2015
  • Electricity generation through fossil fuels has caused environmental pollution. To solve this problem, research on new renewable energy (solar, wind, geothermal heat, etc.) to replace fossil fuels is in progress. These devices are able to consistently generate power. However, they have many drawbacks, such as high installation costs and limitations in possible set-up environments. Thus, piezoelectric harvesting technology, which is able to overcome the limitations of existing energy technologies, is actively being studied. Piezoelectric harvesting technology uses the piezoelectric effect which occurs in crystals that generate voltage when stress is applied. Therefore, it has advantages such as a wider installation base and lower technological cost. In this study, a piezoelectric energy harvesting device based on constant wave motion was investigated. This device can regenerate electricity in a constant turbulent flow in the middle of the sea. The components of the device are circuitry, a steel bar, an bimorph piezoelectric element and buoyancy elements. In addition, a multiphysical analysis coupled with the structure and piezoelectric elements was conducted to estimate the performance of the device. With this piezoelectric energy harvesting device, the displacement and electric power were analyzed.

Fabrication and Characteristic Analysis of Piezoelectric Micro-Transformer (초소형 마이크로 압전변압기 제작 및 특성 분석)

  • Kim Seong-Kon;Seo Young-Ho;Choi Doo-Sun;Whang Kyung-Hyun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.469-470
    • /
    • 2006
  • Piezoelectric transformers based on lead zirconate titanate(PZT) have been received considerable interest because of their wide potential applications in transformer, oscillator, resonance sensor, actuator, acoustic transducer, as well as active slider for hard disk drives. However, for the applications which need a small power supply such as thin and flat displays, micro-robot, micro-system, it is especially necessary to integrate the passive components because they typically need more than 2/3 of the space of the conventional circuit. So, we have fabricated the piezoelectric micro-transformer to supply energy for micro-systems using PZT thin films and MEMS technologies.

  • PDF

Actuating Characteristics of a Piezoceramic fiber Composite Actuator (압전섬유 복합재 엑츄에이터의 거동 특성)

  • Koo, Kun-Hyung;Kim, Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.53-56
    • /
    • 2001
  • Piezoelectric Fiber Composites with Interdigitated Electrodes (PFCIDE) were previously introduced as an alternative to monolithic wafers with conventional electrodes for applications of structural actuation. This paper is an investigation into the performance improvement of piezoelectric fiber composite actuators by changing the matrix material and actuator shape. This paper presents a modified micro-electromechanical model and numerical analyses of piezoelectric fiber/piezopolymer matrix composite actuator with interdigitated electrodes (PFPMIDE). Numerical analyses show that the shape of the graphite/epoxy composite plate with the PFPMIDE may be controlled by judicious choice of voltages, piezoelectric fiber angles, and elastic tailoring of the composite plate.

  • PDF

Enhanced Performance of PVDF Piezoelectric Speaker Using PVDF/ZnO Nanopillar Composites (PVDF/ZnO Nanopillar 복합재료를 이용한 압전필름 스피커의 성능향상)

  • Kwak, Jun-Hyuk;Hur, Shin
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.447-452
    • /
    • 2016
  • In this study, we fabricated and evaluated the performance of film speaker using PVDF/ZnO NP composite structure. PVDF piezoelectric films were fabricated and characterized by XRD and SEM. ZnO nanopillars were prepared by hydrothermal synthesis on prepared PVDF piezoelectric films. We analyzed and tested the acoustic signal characteristics of the piezoelectric film. In order to fabricate an acoustic structure with a wide frequency range from low to high frequency, we have fabricated various types of film speakers and investigated the frequency characteristics. As a result, the fundamental piezoelectric properties of PVDF show that the piezoelectric constant due to ZnO NP increases. And the overall acoustic signal level is also increased by 10% or more. We investigated frequency generation from 500 Hz to 10 KHz using different sizes with PVDF/ZnO NP composite film speaker.

Recent Trends in Energy Harvesting Technology Using Composite Materials (복합소재를 이용한 에너지 하베스팅 기술 동향)

  • Jung, Jae Hwan;Lee, Dong-Min;Kim, Young Jun;Kim, Sang-Woo
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.110-121
    • /
    • 2019
  • Triboelectric nanogenerators and piezoelectric nanogenerators are a spotlighted energy harvesting method that converts the wasted mechanical energy from the environment into usable electrical energy. In the case of triboelectric nanogenerators, researches have been mainly focused on high permittivity and flexible polymer materials, and in the case of piezoelectric nanogenerators, researches have been focused on ceramic materials exhibiting high polarization characteristics. Recently, many researches have been conducted to improve durability and power in various environments by using composite materials which have flexible properties of polymer, high permittivity, thermal resistance and high polarization properties of ceramics. This article reviews the energy harvesting studies reported about composites materials using ceramics and polymers.

Ceramic Actuators with PLZT Functionally Gradient Material (PLZT 경사 기능 재료를 이용한 세라믹 엑튜에이터)

  • Choi, Seung-Chul;Kim, Han-Soo;Sohn, Jeong-Ho;Kim, Hyun-Jai;Jeong, Hyeong-Jin
    • Korean Journal of Materials Research
    • /
    • v.1 no.2
    • /
    • pp.105-112
    • /
    • 1991
  • In PLZT system, a new type of material for piezoelectric actuator was developed and its properties were investigated. This material consists of three layers : a piezoelectric ceramic layer, an interlayer which composition changes gradually, and another piezoelectric layer. This kind of materials is called functionally Gradient Materials(FGM). The composition of these layers were selected from the $(Pb,\;La)(Zr,\;TiO_3$ system through the concept of materials design. Sintered FGM at $1300^{\circ}C$, 2hr has an interlayer of about $20\mu\textrm{m}$ with no distorted damage. Dielectric and piezoelectic properties of FGM show intervalues of each side composition. The strain-voltage characteristics in FGM system was improved comparison with any single composition. Especially, the FGMs were fabricated which has high piezoelectric-low dielectric composition and low piezoelectric-high dielectric composition. The properties of both FGMs were significantly improved.

  • PDF