• Title/Summary/Keyword: Piezoelectric Film Method

Search Result 113, Processing Time 0.027 seconds

Study on the Bonding Process between Thin film and Piezoelectric Materials (박막과 압전 재료 결합에 관한 연구)

  • Chong, Woo-Suk;Kim, Gi-Beum;Hong, Chul-Un
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1014-1018
    • /
    • 2005
  • The purpose of this study is to obtain strong bond strength at the interface between piezoelectric substrates and semiconductor thin films to be applied for the manufacture of high-performance acoustic wave semiconductor coupled device. For this purpose, we have compared and examined the effects of different surface treatment methods on hydrophile properties at the surface of the piezoelectric substrates. Moreover, we have observed the effect of microwave and laser on the elimination of water molecules at the interface. As for the piezoelectric substrates, dry method for surface treatment was found to be superior in the control of hydrophilicity of the surface compared to wet method. On the other hand, both microwave and laser were found to be effective in the elimination of water molecules in the interface.

Thermo-piezoelectric $Si_3N_4$ cantilever array on n CMOS circuit for probe-based data storage using wafer-level transfer method (웨이퍼 본딩을 이용한 탐침형 정보 저장장치용 열-압전 켄틸레버 어레이)

  • Kim Young-Sik;Nam Hyo-Jin;Lee Caroline Sunyoung;Jin Won-Hyeog;Jang Seong.Soo;Cho Il-Joo;Bu Jong Uk
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.22-25
    • /
    • 2005
  • In this research, a wafar-level transfer method of cantilever array on a conventional CMOS circuit has been developed for high density probe-based data storage. The transferred cantilevers were silicon nitride ($Si_3N_4$) cantilevers integrated with poly silicon heaters and piezoelectric sensors, called thermo-piezoelectric $Si_3N_4$ cantilevers. In this process, we did not use a SOI wafer but a conventional p-type wafer for the fabrication of the thermo-piezoelectric $Si_3N_4$ cantilever arrays. Furthermore, we have developed a very simple transfer process, requiring only one step of cantilever transfer process for the integration of the CMOS wafer and cantilevers. Using this process, we have fabricated a single thermo-piezoelectric $Si_3N_4$ cantilever, and recorded 65nm data bits on a PMMA film and confirmed a charge signal at 5nm of cantilever deflection. And we have successfully applied this method to transfer 34 by 34 thermo-piezoelectric $Si_3N_4$ cantilever arrays on a CMOS wafer. We obtained reading signals from one of the cantilevers.

  • PDF

A Study on the preparation of optimum piezoelectric organic thin films of PVD method and switch characteristic (진공증착법을 이용한 최적의 압전성 유기박막의 제조와 스위치 특성에 관한 연구)

  • 박수홍;이선우;이희규
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3A
    • /
    • pp.194-200
    • /
    • 1999
  • In this paper studied was the piezoelectric properties of the $\beta$-PVDF organic thin films prepared by physical vapour deposition method. The molecular orientation of organic thin films was controlled by the application of an electric field and variation of substrate temperature during the evaporation process. Optimum conditions of manufacturing $\beta$-PVDF organic thin film by physical vapor deposition method is to keep at the substrate temperature of $80^{\circ}C$, at the applied electric field of 142.8 kV/cm. The voltage output coefficient increased from 1.39 to 7.04V increasing the force moment.

  • PDF

Fabrication and Characterization of piezoelectric thick films prepared by Screen Printing Method (Screen Printing법을 이용한 압전 후막의 제조 및 특성연구)

  • 김상종;최형욱;백동수;최지원;윤석진;김현재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.873-876
    • /
    • 2000
  • Characteristics of piezoelectric thick films prepared by screen printing method were investigated. The piezoelectric thick films were printed using Pb(Mg,Nb)O$_3$-Pb(Zr,Ti)O$_3$system. The lower electrodes were coated with various thickness of Ag-Pd by screen printing to investigate the effect as a diffusion barrier and deposited with Pt by sputtering on Ag-Pd. The ceramic paste was prepared by mixing powder and binder with various ratios using three roll miller. The fabricated thick films were burned out at 650$^{\circ}C$ and sintered at 950$^{\circ}C$ in the O$_2$condition for each 20, 60min after printing with 350mesh screen. The thickness of piezoelectric thick film was 15∼20 $\mu\textrm{m}$ and the Ag-Pd electrode acted as a diffusion barrier above 3 $\mu\textrm{m}$ thickness. When the lower electrode Ag-Pd was 6 $\mu\textrm{m}$ and the piezoelectric thick films were sintered by 2nd step (650$^{\circ}C$/20min and 950$^{\circ}C$/1h) using paste mixed Pb(Mg,Nb)O$_3$-Pb(Zr,Ti)O$_3$$.$ MnO$_2$+ Bi$_2$O$_3$. V$_2$O$\_$5/ and binder in the ratio of 70:30, the remnant polarization of thick film was 9.1 ${\mu}$C /cm$^2$.

  • PDF

A Portable Skin Elasticity Measuring Device Based on Indentation Method Using Piezoelectric Effect (압전효과를 이용한 압인방식의 휴대용 피부탄력 측정장치)

  • Park, Jun-Young;Kim, Myoung Nam
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1307-1315
    • /
    • 2022
  • In this paper, we proposed and developed a new portable skin elasticity measuring device based on the indentation method using piezoelectric effect. The proposed device is designed to minimize the uncertainty caused by the layer structure of the skin when measuring the elasticity of the skin. And, we developed a piezoelectric-based thin-film pressure sensor that can measure quantitatively and quickly during repeated measurement as a device sensor. To confirm the effectiveness of the proposed measuring device, it was compared with the experimental results of the conventional measuring devices under the same experimental conditions, and statistical correlation analysis was performed between the experimental data of the proposed measuring device and the experimental data of the conventional measuring devices. As a result of the correlation analysis, it was confirmed that the proposed measuring device had a high correlation with the conventional measuring devices. Therefore, it was confirmed that the proposed skin elasticity measuring device was effective.

Evaluation of Piezoelectric Properties in Pb(Zr,Ti)$O_3$-PVDF 0-3Type Composites for Thick Film Speaker Application (후막스피커 응용을 위한 Pb(Zr,Ti)$O_3$-PVDF 0-3형 복합체의 압전 특성 평가)

  • Son, Yong-Ho;Kim, Sung-Jin;Jeong, Joon-Seok;Ryu, Sung-Lim;Kweon, Soon-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.40-41
    • /
    • 2006
  • In this work, we developed the 0-3 type piezoelectric composite to incorporate the advantages of both ceramic and polymer. The PVDF-PZT composites were fabricated with various mixing ratio by 3-roll mi11 mixer. The composite solutions were coated on ITO bottom-electrode deposited on PET (polyethylene terephthalate) polymer film by the conventional screen-printing method. After depositing the top-electrode of silver-paste, 4kV/mm of DC field was applied at $120^{\circ}C$ for 30min to poling the 0-3 composite film. The value of $d_{33}$ was increased as the PZT weight percent was increases. But the $g_{33}$ value showed the maximum at 65 wt% of PZT powder.

  • PDF

Improvement of Piezoelectric Performance of the CNT/PVDF Composite Film by Enhancing Conductivity of the PEDOT:PSS Electrodes (PEDOT:PSS 전극의 전도도향상에 의한 CNT/PVDF 복합막의 압전성능 개선)

  • Lim, Young-Taek;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.716-719
    • /
    • 2016
  • In this paper, we fabricated flexible CNT/PVDF (carbon nanotube / polyvinylidene fluoride) piezoelectric composite device with flexible poly(3,4-ethylenedioxythiophene) : polystyrene sulfonate (PEDOT:PSS) conducting polymer electrode using spray coating method. We tried to improve the piezoelectric performance from the CNT/PVDF composite film by enhancing electrical conductivity of the PEDOT:PSS electrodes. Electrical conductivity of the PEDOT:PSS electrode was enhanced by dipping it into the EG (ethylene glycol) solvent. Changes of chemical composition of the PEDOT:PSS electrode were analyzed with the dipping time by XPS (x-ray photoelectron spectroscopy) in terms of oxygen (O1s). Finally, Piezoelectric performances such as output voltage and current were measured with the dipping time. We found that enhanced electrical conductivity of the PEDOT:PSS electrodes resulted in improvement of the piezoelectric performance of the CNT/PVDF films.

바이오응용을 위한 압전 공진형 MEMS 소자

  • Kim Yong Bum;Kim Hyung Joon;Kang Ji-Yoon;Kim Tae Song
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.1-7
    • /
    • 2002
  • This papers describes the preparation and experimental results of a micro mass detection devices based on cantilever and a diffuser-type micro pump using screen printing thick-film technologies and Si micro-machining. PZT-PCW thick films were prepared by new hybrid method based on the screen printing. By applying these PZT-PCW piezoelectric thick films on actuator, a cantilever for mass detection sensor and a micropump for microfluidic element are successfully fabricated. Resonant frequency and displacement of PZT-PCW thick film actuator in air and in liquid are measured by laser vibrometer system as a function of actuator size. The resonant frequency of PZT-PCW thick film actuator in liquid decreases order of 1/2-1/4 due to damping effect. The sensitivity of cantilever is characterized by Au deposition method which has the mass loading effect such as adsorption of protein. The Sensitivity of PZT-0.12PCW thick film cantilever is proportional to detecting area.

  • PDF

Micro Power Properties of Harvesting Devices as a Function of PZT cantilever length and gross area (PZT 캔틸레버의 길이와 면적에 따른 에너지 하베스팅 장치의 출력 특성)

  • Kim, I.S.;Joo, H.K.;Song, J.S.;Kim, M.S.;Jeong, S.J.;Lee, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1246-1247
    • /
    • 2008
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. Therefore, in other to made piezoelectric energy harvesting device, PMN-PZT thick film was formed by the screen printing method on the Ag/Pd coated alumina substrate. The layer was 8 layers and slurry where a-terpineol, ethycellulose, ferro B-75001 as Vehicle, PMN-PZT powder used are fabricated by ball mill. The output power quality was be also investigated by changing the load resistance, weight and frequency. The made piezoelectric energy harvesting device was resulted from the conditions of 33$k{\Omega}$, 0.25g, 197Hz respectively. The thick film was prepared at the condition of 2.75Vrms, and its power was 230${\mu} W$ and its thickness was 56${mu}m$. The piezoelectric energy harvesting device output voltage was increased, when the load weight, load resistance was increasing and resonance frequency was diminishing. The other side, resonance frequency was diminished, when the weight was increasing. And output power was continuously it changed by load resistance, output voltage, weight and resonance frequency.

  • PDF

A Study on the Piezoelectric Characteristic of P(VDF-TrFE) Copolymer Thin Film by Physical Vapor Deposition Method (진공증착법을 이용한 P(VDF-TrFE) 공중합체 박막의 압전특성에 관한 연구)

  • Park, S.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.220-225
    • /
    • 2008
  • In this research, the P(VDF-TrFE) copolymer thin films were prepared by the physical vapor deposition and studied to their piezoelectric properties. In the case of a specimen produced by varying the deposition temperature from $260^{\circ}C$ to $300^{\circ}C$, its piezoelectric coefficient($d_{33}$) increased from 32.3pC/N to 36.28pC/N, and piezoelectric voltage coefficient($g_{33}$) from $793{\times}10^{-3}V{\cdot}m/N$ to $910.5{\times}10^{-3}V{\cdot}m/N$. On the basis of these experimental results, we concluded that the P(VDF-TrFE) copolymer thin film prepared at $300^{\circ}C$ showed the optimum piezoelectric properties. At the deposition temperature of $320^{\circ}C$, its piezoelectric coefficient(d33) decreased 25.3 pC/N and piezoelectric voltage coefficient($g_{33}$) $680{\times}10^{-3}V{\cdot}m/N$.