• Title/Summary/Keyword: Piezoelectric Ceramics

Search Result 830, Processing Time 0.028 seconds

Characteristic Variation of Underwater Acoustic Transducer with Electric Decoupler (절연층을 고려한 수중음향 트랜스듀서의 특성변화 고찰)

  • Seo, Hee-Sun;Kim, Jung-Suk;lee, Jeong-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.244-246
    • /
    • 2005
  • The Tonpiltz transducer is one of the essential elements in sonar application. The characteristics of transducer depend on the piezoelectric ceramics and mechanical elements such as head mass, tail mass, pre-stress rod and so on. One of the important characteristics is stable electric resistance for high power transmitting operation. This paper presents characteristics variation of the underwater acoustic transducer with material variation of electric decoupler.

  • PDF

The Effect of Poling Strength on Temperature Dependence of Resonance Frequency of PZT Ceramics Near the Morphotropic Phase Boundary (분극전계가 모포트로픽 상경계 부근의 PZT 세라믹스의 공진주파수의 온도의존성에 미치는 영향)

  • Yang, Jung-Bo;Yang, Wan-Seok;Lee, Gae-Myoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1213-1217
    • /
    • 2008
  • Poling is an important process in fabricating PZT ceramic devices such as filters and resonators and activates piezoelectricity to sintered PZT ceramics. Tolerance of the operating frequency of these devices is tightly required in applications. And a factor to attribute the tolerance is the temperature dependence of the resonance frequency of PZT ceramics. In this paper the relationship of poling strength and temperature dependence of resonance frequency of PZT specimens was studied. The $Pb(Zr_{0.53}Ti_{0.47})O_3$ ceramics were fabricated and the poling strengths were chosen to be 0.5, 1.5, 2.5 and 3.5 [kV/mm]. The dielectric constant of the specimen poled in poling strength 0.5 [kV/mm] was less than that of unpoled specimen and the specimen poled in higher electric field had the higher dielectric constant. (002) peak in X-ray diffraction patterns of the specimens increased as poling strength increased. And the change of resonance frequency of the specimens according to the variation of temperature was measured. Resonance frequency of all specimens increased as the temperature increased. The specimen poled in higher electric field had the smaller positive temperature coefficient of resonance frequency. The effect that temperature coefficient of resonance frequency becomes smaller is obtained when Zr mole in PZT composition equation increase. Controlling the poling strength is believed to be a method to adjust the temperature stability of resonance frequency of the PZT ceramic devices.

Microstructure and Electrical Properties of Pb[(Mg,Mn)Nb]O3-Pb(Zr,Ti)O3 Piezoelectric Ceramics

  • Kim, Jin-Ho;Kim, Jong-Hwa;Baik, Seung-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.202-209
    • /
    • 2005
  • Phase evolution, microstructure and the electrical properties such as $k_p$ and $Q_m$ of $Pb(Mg_{1/3}Nb_{2/3})O_3[PMN]-Pb(Mn_{1/3}Nb_{2/3})O3[PM'N]-PbZrO_3[PZ]-PbTiO_3[PT]$ quaternary system were investigated within the compositional ranges $0{\leq}y{\leq}0.125$, y+z=0.125, and $0.39{\leq}x{\leq}0.54$ of the formula $Pb_{0.97}Sr_{0.03}[Mg_{1/3}Nb_{2/3})_y\;(Mn_{1/3}Nb_{2/3})_z\;(Zr_{x}Ti_{1-x})_{1-(y+z)}]O_3$. In the case of increasing Mn/(Mg+Mn) ratio for a fixed Zr/Ti ratio of 47.5/52.5, phase relation remained unchanged but the grain size drastically decreased, and the electrical properties changed as following: both $k_P$ and $Q_m$ reached the peak values at $Mn/(Mg+Mn)\cong0.3l7$ and gradually decreased; $\varepsilon33^T$ showed a monotonic decrease; P-E hysteresis loop gradually changed to asymmetrical one, and $E_i$ increased in correspondence. With increasing Zr/Ti ratio for a fixed Mn/(Mg+Mn) ratio of 0.317, on the contrary, the cell parameter $(\alpha^2c)^{1/3}$ gradually increased, and tetragonal-rhombohedral morphotropic phase boundary appeared in the range of $51/49{\leq}Zr/Ti{\leq}54/46$. the meantime, the grain size substantially increased, and the electrical properties changed as following: $k_P$ and $\varepsilon33^T$ reached peak values at Zr/Ti=51/49 and 48/52, respectively, and then gradually decreased; change of $Q_m$ was adverse to $k_P$; both $E_C\;and\;E_i$ considerably decreased while $P_S$ moderately increased. For the system 0.125(PMN+PM'N)-0.875PZT studied, the composition Mn/(Mg+Mn)=0.3l7 and Zr/Ti=51/49 revealed some promising electrical properties for piezoelectric transformer application such as $k_P=0.58,\;Q_m\cong1000$, and $\varepsilon^T_{33}=970$, as well as dense and fine-grained microstructure.

Fabrication and Electrical Properties of High Tc $A_{2}B_{2}O_{7}$ Piezoelectric Ceramics Using the Powders Prepared by the Molten Salt Synthesis Method (용융염합성법에 의한 $A_{2}B_{2}O_{7}$ 고온압전세라믹스의 제작과 전기적특성)

  • Park, In-Ho;Kim, Tae-Gyu;Nam, Hyo-Duk
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.93-100
    • /
    • 1996
  • Polycrystalline $Sr_{2}(Ta_{1-x}Nbx)_{2}O_{7}$ and $La_{2}Ti_{2}O_{7}$ ceramics having very high Curie temperatures were synthesized by the conventional oxide mixing method (CON) and the molten salt synthesis method (MSS). Physical characteristics and phase relationship of calcined powders, as well as the sintering behavior, the grain-orientation and dielectric properties of sintered ceramics were investigated as a function of composition and firing temperature. The single $A_{2}B_{2}O_{7}$ phase was synthesized by using the MSS method at 100 - $150^{\circ}C$ lower temperature compared to the CON method. As Nb content increased in $Sr_{2}(Ta_{1-x}Nbx)_{2}O_{7}$ ceramics, the Curie temperature and the dielectric constant at Curie temperature were raised, and the sintering behavior and the degree of grain-orientation were also improved at the same time. The use of MSS-derived powders made it possible to lower the sintering temperature and to improve the dielectric properties of the sintering samples. However, the piezoelectric properties as well as the grain-orientation were not improved any further by the MSS route.

  • PDF

Electric Power Generation from Piezoelectric Ceramics (압전 세라믹을 이용한 전기 발전)

  • Paik, Jong-Hoo;Shin, Bum-Seung;Lim, Eun-Kyeong;Kim, Chang-Il;Im, Jong-In;Lee, Young-Jin;Choi, Byung-Hyun;Kim, Dong-Kuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.304-304
    • /
    • 2006
  • One method of Electric Power Generation is to use piezoelectric materials, which form transducers that are able to interchange electrical energy and mechanical force or strain. This study describes the fabrication and properties of piezoelectric transducers for Power Generation application. The structure of the transducers was ceramic-metal-ceramic 3-layered parallel type The center metal layer of phosphorous bronze was bonded by two piezoelectric layers of which have sputtered Ag/Cu(or Ni/Cu) electrode layers on both sides.. The Energy generated by the vibration of piezoelectric transducers Can be achieved by adjusting a suitable piezoelectric constant and mechanical structures. The piezoelectric material used in this application showed the electrical properties of r=4400, $d_{33}\;=\;750\;(10^{-12}\;m/V)$, $d_{31}\;=\;-300\;(10^{-12}\;m/V)$, $k_{33}\;=\;71%$, $Qm\;=\;85$, $T_c\;=\;210^{\circ}C$.

  • PDF

Dielectric and Piezoelectric Characteristics of 0.94$(K_{0.5}Na_{0.5})NbO_3$-0.06Ba$(Zr_{0.05}Ti_{0.95})O_3$ Ceramics System According to the variations of sintering aids (소결조재 변화에 따른 0.94$(K_{0.5}Na_{0.5})NbO_3$-0.06Ba$(Zr_{0.05}Ti_{0.95})O_3$ 세라믹스의 유전 및 압전특성)

  • Seo, Byeong-Ho;Kim, Do-Hyung;Lee, Yu-Hyong;Yoo, Ju-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.205-205
    • /
    • 2008
  • PZT 세라믹은 우수한 유전 및 압전특성을 갖고 있어 변압기, 센서 및 엑츄에이터 등에 널리 응용되고 있다. 그러나, 우수한 특성에도 불구하고 PZT세라믹스의 소결시 PbO의 높은 유독성 및 휘발로 인하여 환경오염을 야기 시킨다. 그러므로 PbO로 구성된 세라믹을 대체하기 위한 우수한 압전특성을 가진 비납계 세라믹스 개발이 연구의 주류를 이루고 있다. 그 중 비납계 NKN와 BZT는 대체물질로 많이 관심을 받고 있다. 이는 일반적인 NKN조성은 우수한 압전성과 높은 큐리온도를 가지고 있을 뿐만 아니라, BZT조성의 Zr성분이 큐리온도를 낮추거나 유전특성을 졸게 하여 유전율 곡선을 완화하게 하는 특징이 있다. 하지만 NKN은 $1140^{\circ}C$이상의 소결온도에서 K의 휘발특성으로 인해 소성 후에도 주변의 수분을 흡수하는 조해성이 발생하는 문제가 발생한다. 그래서 본 연구에서는 낮은 온도에서 NKN계 세라믹스의 밀도를 증가시킬 뿐만 아니라, 우수한 유전 및 압전특성을 갖는 세라믹스를 제조하고자 비납계 $0.94(K_{0.5}Na_{0.5})NbO_3-0.06Ba(Zr_{0.05}Ti_{0.95})O_3$ (NKN-BZT)의 조성을 사용하였고 소결조제로는 $MnO_2$, NiO, $Bi_2O_3$, ZnO, $Li_2CO_3$, CuO등을 변화주어 유전 및 압전 특성을 알아보았다.

  • PDF

Effect of Bismuth Excess on Piezoelectric and Dielectric Properties of BiFeO3-BaTiO3 Ceramics (Bi 과잉에 따른 BiFeO3-BaTiO3 세라믹스의 압전 및 유전특성)

  • Lee, Jae Hong;Lee, Myang Hwan;Song, Tae Kwon;Kim, Won-Jeong;Sung, Yeon Soo;Kim, Myong-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.144-148
    • /
    • 2017
  • The effects of an excess of Bi on the piezoelectric and dielectric properties of $0.60Bi_{1+x}FeO_3-0.40BaTiO_3$ (x = 0, 0.01, 0.03, 0.05, 0.07) were investigated. The ceramics were processed through a conventional solid state reaction method and then quenched after sintering at different temperatures in the range of $980{\sim}1070^{\circ}C$. A single perovskite structure without any secondary phase was confirmed for all compositions and temperatures. It was found that excess Bi reduced the sintering temperatures, acted as a sintering aid and enhanced the properties in combination with quenching. Curie temperature ($T_C$) was found to slightly increase due to the presence of excess Bi; electrical properties were also improved by quenching. At x = 0.03 and $1030^{\circ}C$, remnant polarization ($2P_r$) was as high as $45.4{\mu}C/cm^2$ and strain at 40 kV/cm was up to 0.176 %.

A Study on the Electrical and Optical Characteristics of CLN-PZT Ceramics (CLN-PZT 세라믹스의 전기, 광학 특성에 관한 연구)

  • Kang, Won-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.799-801
    • /
    • 1988
  • This paper was studied on the effects of Ca-La-Nb substitution and Zr/Ti ratio variation to Pb(Zr, Ti)$O_3$ system on structural, electrical, optical and sound level characteristics in order to develope the piezoelectric and electrooptic ceramic devices. Also the specimens were prepared by the two stage sintering technique. The molecular formular was X($CaO{\cdot}1/4La_{2}O_{3}{\cdot}1/4Nb_{2}O_{5}){\cdot}(1-X)Pb(Zr_{Y}Ti_{1-Y})O_{3}$(x=100X, y=100Y), and the variation of x was $6{\sim}12$, y was 60${\sim}$49 and second stage sintering time was 20${\sim}$40 hours. The experimental results obtained from this study are as follows : 1. The density was decreased, the grain size was increased according to increase of Ca-La-Nb substitution. 2. The crystal structure was rhombohedral in composition 6/60/40, and the crystal structure was tetragonal and cubic according to increase of Ca-La-Nb substitution. 3. The Ca substitution of PZT system enhanced the sintering property. The Pb site vacancy resulting from the substitution of La-Nb increased the dielectrical constant, the piezoelectric charge constant, the dielectric loss and decreased the coercive field. 4. The resistivity of PZT system which has the P type conduction mechanism increased according to substitution of La-Nb because of the substituent acting as donor. 5. The PZT ceramics varied from ferroelectric substance according to increase of Ca-La-Nb substituent. The coercive field and saturation remanent polarization decreased, and at last straight line according to increase of La-Nb substitution. 6. The amount of Ca-La-Nb substitution to improve the light transmittance of speciment was 10 mol%, the Zr/Ti ratio was 49/51, and the second stage sintering time was 40 hours. 7. According to Ca-La-Nb substitution, the specimens was to be transparent. The 7.5/51/49 specimen was suitable for transparent sound vibrator because it had 58% light transmittance (thick 0.2[mm], wave length 700[mm]) and 48% electromechanical coupling factor.

  • PDF