• Title/Summary/Keyword: Piezoceramic Transducer

Search Result 25, Processing Time 0.021 seconds

Piezoelectric and Acoustic Properties of PZI-Polymer 1 -3-0 Type Composite (PZT-고분자 1-3-0형 복합압전체의 압전 및 음향특성)

  • 양윤석;유영준;최헌일;손무헌;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.317-320
    • /
    • 1999
  • In this study, the piezoelectric ceramics PZT powder was synthesized by Wet-Dry combination method. And the flexible 1-3-0 type composites were fabricated with piezoceramic PZT and Eccogel polymer matrix embedded 3rd phase. Dielectric constant of 1-3-0 type composites was lower than that of single phase PZT ceramics. Thickness mode coupling factor k/sub t/ which was comparable with single phase PZT ceramics and mechanical quality factor Qm were about 0.65 and 6, respectively. These composites are considered as a good candidates for broad-band type transducer applications. The acoustic impedance of 1-3-0 type composites was lower than that of single phase PZT ceramics. Therefore, these composites would be better used for hydrophone applications.

  • PDF

Fabrication and Electrical Properties of Piezoceramics PZT-Polymer 1-3-0 Type Composite (압전세라믹 PZT-고분자 1-3-0형 복합압전체의 제조 및 전기적 특성)

  • Shon, Mu-Hun;Choi, Hun-Il;Sa, Gong-Geon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.4
    • /
    • pp.241-246
    • /
    • 1999
  • In this study, the piezoelectric ceramics PZT powders were synthesized by Wet-Dry combination method. And the flexible 1-3-0 type composites were favricated with piezoceramic PZT and Eccogel polymer matrix embedded 3rd phase. Dielectric constant of 1-3-0 type composites was lower than that of single phase PZT ceramics. Thickness mode coupling factor $k_t$ which was comparable with single phase PZT ceramics, and Mechanical Quality factor $Q_m$ were about 0.65 and 6 respectively. These composites are considered as a good candidates for broad-band type transducer applications. The acoustic impedance for 1-3-0 type composites was lower than that of single phase PZT ceramics. Therefore, these composites would be better used for hydrophone applications.

  • PDF

Optimization of 1-3 Piezoelectric Composites Considering Transmitting and Receiving Sensitivity of Underwater Acoustic Transducers (수중 음향 트랜스듀서의 송수신 감도를 고려한 1-3형 압전복합체의 구조 최적화)

  • Lee, Jaeyoung;Pyo, Seonghun;Roh, Yongrae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.790-800
    • /
    • 2013
  • The optimal structure of 1-3 piezocomposites has been determined by controlling polymer properties, ceramic volume fraction, thickness of composite and aspect ratio of the composite to maximize the TVR (transmitting voltage response), RVS (receiving voltage sensitivity) and FBW (fractional bandwidth) of underwater acoustic transducers. Influence of the design variables on the transducer performance was analyzed with equivalent circuits and the finite element method. When the piezocomposite is vibrating in a pure thickness mode, inter-pillar resonant modes are likely to occur between lattice-structured piezoceramic pillars and polymer matrix, which significantly deteriorate the performance of the piezocomposite. In this work, a new method to design the structure of the 1~3 type piezocomposite was proposed to maximize the TVR, RVS and FBW while preventing the occurrence of the inter-pillar modes. Genetic algorithm was used in the optimal design.

Development and Characterization of Ultrasonic transducers for High Temperature Contact Measurement (고온 접촉식 탐상용 초음파 탐촉자 개발 및 평가)

  • Kim, Ki-Bok;Kim, Byoung-Geuk;Lee, Seung-Seok;Yoon, Nam-Won;Yoon, Dong-Jin;Ahn, Yoon-Kook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.14-20
    • /
    • 2003
  • Piezoelectric ultrasonic transducers for high temperature contact measurement were developed. These high temperature ultrasonic transducers (HTUT) consisted of bismuth titanate piezoceramic element whose Curie temperature is higher than $600^{\circ}C$, a backing material of the mixture of tungsten powder and inorganic binder, an inner alumina tube, a wear Plate and a housing. The operational frequencies or the HTUT were 1.04 and 2.08 MHz, respectively. Various commercially available couplants for high temperature were evaluated and compared. As a couplant for high temperature ultrasonic testing between HTUT and test specimen, gold epoxy was selected. The peak amplitude of pulse-echo signals from steel test specimen decreased with increasing temperature. The operational temperature of the HTUT reached up to $500^{\circ}C$ at which the continuous contact measurement was possible.

The Determination of Transducer Locations for Active Structural Acoustic Control of the Radiated Sound from Vibrating Plate (평판에서 방사되는 소음의 능동구조소음제어를 위한 변환기의 위치결정)

  • 김흥섭;홍진석;이충휘;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.694-701
    • /
    • 2002
  • In this paper, through the study on locations of structural transducers for active control of the radiated sound from the vibrating plate, the active structural acoustic control (ASAC) system is proposed. And, for the evaluation of the proposed location, the experiment of the active structural acoustic control is implemented using the multi-channel filtered-x LMS algorithm and an additional filter (Acoustic Prediction Filter) to estimate the radiated sound using the acceleration signals of the plate. The structural transducers are piezoceramic actuator (PZT) and accelerometer. PZT is used as an actuator to reduce the vibration and the radiated sound. To maximize the control performance, each PZT actuator is located at the position that has the largest control sensitivity of the plate bending moment in the direction of x and y coordinates and the optimal PZT location is validated experimentally. Also, to find the acoustic prediction filter accurately, two accelerometers are located at the positions that have the largest radiation efficiencies of the plate, and the proposed locations are validated by simulation using the Rayleigh integral. The multi-channel filtered-x LMS algorithm is introduced to control a complex 2-D structural vibration mode. Finding the locations of structural transducers for active structural acoustic control of the radiated sound, the active structural acoustic control (ASAC) system can be presented and validated by experiments using a real time control system.