Browse > Article
http://dx.doi.org/10.4313/JKEM.2013.26.11.790

Optimization of 1-3 Piezoelectric Composites Considering Transmitting and Receiving Sensitivity of Underwater Acoustic Transducers  

Lee, Jaeyoung (Department of Sensor and Display Engineering, Kyungpook National University)
Pyo, Seonghun (Department of Mechanical Engineering, Kyungpook National University)
Roh, Yongrae (Department of Mechanical Engineering, Kyungpook National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.26, no.11, 2013 , pp. 790-800 More about this Journal
Abstract
The optimal structure of 1-3 piezocomposites has been determined by controlling polymer properties, ceramic volume fraction, thickness of composite and aspect ratio of the composite to maximize the TVR (transmitting voltage response), RVS (receiving voltage sensitivity) and FBW (fractional bandwidth) of underwater acoustic transducers. Influence of the design variables on the transducer performance was analyzed with equivalent circuits and the finite element method. When the piezocomposite is vibrating in a pure thickness mode, inter-pillar resonant modes are likely to occur between lattice-structured piezoceramic pillars and polymer matrix, which significantly deteriorate the performance of the piezocomposite. In this work, a new method to design the structure of the 1~3 type piezocomposite was proposed to maximize the TVR, RVS and FBW while preventing the occurrence of the inter-pillar modes. Genetic algorithm was used in the optimal design.
Keywords
1-3 piezocomposite; TVR; RVS; Inter-pillar mode; Optimization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. R. Gururaja, W. A. Schulze, L. E. Cross, R. E. Newnham, B. A. Auld, and Y. J. Wang, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Su-32, 481 (1985).
2 R. E. Newnham, Ferroelect, 68, 1 (1986).   DOI
3 E. K. Akdogan, M. Allahverdi, and A. Safari, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 52, 746 (1986).
4 R. E. Newnham, D. P. Skinner, and L. E. Cross, Mater. Res. Bull., 13, 525 (1978).   DOI   ScienceOn
5 A. Christine, H. Hennion, and J. N. Decarpigny, J. Acoust. Soc. Am., 94, 621 (1993).   DOI   ScienceOn
6 L. Bowen, R. Gentilman, D. Fiore, H. Pham, W. Serwatka, C. Near, and B. pzaol, Ferroelect., 187, 109 (1996).   DOI   ScienceOn
7 K. C. Benjamin, J. Electroceramics, 8, 145 (2002).   DOI   ScienceOn
8 C. Richard, L. Goufon, D. Guyomar, H. S. Lee, and G. Grange, Ultrason, 40, 895 (2002).   DOI   ScienceOn
9 G. R. Harris and P. M. Gammell, J. Acoust. Soc. Am., 115, 2914 (2004).   DOI   ScienceOn
10 L. V. Giviansky and S. Torquato, Struct. Optim., 13, 23 (1997).   DOI   ScienceOn
11 O. Sigmund, S. Torquato and I. A. Aksay, J. Mater. Res., 13, 1038 (1998).   DOI   ScienceOn
12 B. A. Auld and Y. Wang, IEEE Ultrason. Symp., 528 (1984).
13 D. Certon, F. Patat, F. Levassort, G. Feuillard, and B. Karlsson, J. Acoust. Soc. Am., 101, 2043 (1997).   DOI
14 P. Reynolds, J. Hyslop, and G. Hayward, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 2, 1650 (2003).
15 F. Craciun, L. Sorba, E. Molinari, and M. Pappalardo, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 36, 50 (1989).   DOI   ScienceOn
16 Y. Wang, Ph. D. Dissertation, Stanford University (1986).
17 D. Robertson, G. Hayward, A. Gachagan, and V. Murray, IEEE Trans. Ultrason., Ferroelect,. Freq. Contr., 53, 1503 (2006).   DOI   ScienceOn
18 C. N. Della and D. Shu, Sens. Actuators A Phys., 140, 2000 (2007).
19 L. L. Beranek, Acousitcs (Mcgraw-Hill, New York, 1954).
20 W. A. Smith and B. A. Auld, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 38, 40 (1991).   DOI   ScienceOn
21 W. A. Smith, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 40, 41 (1993).   DOI   ScienceOn
22 J. F. Nye, Physical Properties of Crystals (Oxford University Press, New York, 1985).
23 C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound (Springer, New York, 1985).