• Title/Summary/Keyword: Piezo Sensor

Search Result 170, Processing Time 0.02 seconds

A low cost miniature PZT amplifier for wireless active structural health monitoring

  • Olmi, Claudio;Song, Gangbing;Shieh, Leang-San;Mo, Yi-Lung
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.365-378
    • /
    • 2011
  • Piezo-based active structural health monitoring (SHM) requires amplifiers specifically designed for capacitive loads. Moreover, with the increase in number of applications of wireless SHM systems, energy efficiency and cost reduction for this type of amplifiers is becoming a requirement. General lab grade amplifiers are big and costly, and not built for outdoor environments. Although some piezoceramic power amplifiers are available in the market, none of them are specifically targeting the wireless constraints and low power requirements. In this paper, a piezoceramic transducer amplifier for wireless active SHM systems has been designed. Power requirements are met by two digital On/Off switches that set the amplifier in a standby state when not in use. It provides a stable ${\pm}180$ Volts output with a bandwidth of 7k Hz using a single 12 V battery. Additionally, both voltage and current outputs are provided for feedback control, impedance check, or actuator damage verification. Vibration control tests of an aluminum beam were conducted in the University of Houston lab, while wireless active SHM tests of a wind turbine blade were performed in the Harbin Institute of Technology wind tunnel. The results showed that the developed amplifier provided equivalent results to commercial solutions in suppressing structural vibrations, and that it allows researchers to perform active wireless SHM on moving objects with no power wires from the grid.

Application and Design of Scent Display Device for Head-Mounted Display (HMD용 발향장치 설계와 적용)

  • Baek Yu, Min Ho;Kim, Min Ku;Keum, Dong-Wi;Kim, Jeong-Do
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.52-57
    • /
    • 2019
  • Studies to augment emotion and immersion in multimedia content through olfactory stimulation are being increasingly conducted in the past two decades, and a variety of scent devices have been developed. Most of the scent devices are very large and heavy; consequently, they are installed on a table rather than being attached to the Head-mounted Display (HMD). Even if such devices are mounted on the HMD, it is not possible to control the scent density because of the size limitation, and it is not easy to be immersed in the experience because of the noise caused by the scent device. In order for an actual virtual reality or an augmented reality system to work efficiently with the scent device, three conditions - noiseless, a compact design, and concentration control- must be satisfied. In this study, we design a scent device that satisfies these three conditions. By using a miniature piezoelectric pump, a small size scent device is designed so that it can be easily attached to the lower end of the HMD, and hardly any noise is generated. Moreover, it is possible to control the concentration of the scent by controlling the piezoelectric pump using amplitude and frequency.

Study on Scent Media Service in Virtual Reality (발향장치를 이용한 가상현실에서의 향 미디어 서비스)

  • Yu, Ok Hwan;Kim, Min Ku;Kim, Jeong-Do
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.414-420
    • /
    • 2018
  • To augment emotion and immersion in virtual reality (VR), technological research based on scent displays have increased in recent years. The results of extensive studies have enabled the development of methods to interface head mounted displays (HMDs) with scent devices, and the possibility of VR applications of this development was identified via several demonstrations in actual VR environments. Despite all these efforts, more practical methods and conditions for scent display in VR environments are yet to be developed. To efficiently interface VR and scent, this study proposes three ways to set the position for scent display and scent conditions. The first is scent display using local positioning in the VR engine, the second is scent display using the relative distance and orientation between user and object in VR environments, and the third is scent display using time setting. In this study, we developed scent devices using a piezo actuator to validate the proposed method and successfully conducted demonstrations and experiments.

Acoustic Event Detection and Matlab/Simulink Interoperation for Individualized Things-Human Interaction (사물-사람 간 개인화된 상호작용을 위한 음향신호 이벤트 감지 및 Matlab/Simulink 연동환경)

  • Lee, Sanghyun;Kim, Tag Gon;Cho, Jeonghun;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.4
    • /
    • pp.189-198
    • /
    • 2015
  • Most IoT-related approaches have tried to establish the relation by connecting the network between things. The proposed research will present how the pervasive interaction of eco-system formed by touching the objects between humans and things can be recognized on purpose. By collecting and sharing the detected patterns among all kinds of things, we can construct the environment which enables individualized interactions of different objects. To perform the aforementioned, we are going to utilize technical procedures such as event-driven signal processing, pattern matching for signal recognition, and hardware in the loop simulation. We will also aim to implement the prototype of sensor processor based on Arduino MCU, which can be integrated with system using Arduino-Matlab/Simulink hybrid-interoperation environment. In the experiment, we use piezo transducer to detect the vibration or vibrates the surface using acoustic wave, which has specific frequency spectrum and individualized signal shape in terms of time axis. The signal distortion in time and frequency domain is recorded into memory tracer within sensor processor to extract the meaningful pattern by comparing the stored with lookup table(LUT). In this paper, we will contribute the initial prototypes for the acoustic touch processor by using off-the-shelf MCU and the integrated framework based on Matlab/Simulink model to provide the individualization of the touch-sensing for the user on purpose.

Study on 2 types of Liquid Lens control system used for the autofocus (자동초점에 사용되는 두 가지 Liquid Lens제어에 관한 연구)

  • Kim, Nam-Woo;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1493-1498
    • /
    • 2015
  • The autofocus system is automatically to drive the focus. It is very important to computer vision system. In the case of a compact camera, the actuator technology is used for auto-focus in mass production. the position sensor is required, the circuit configuration and easy method is widely used in VCM, compared to the stability of the drive size and the noise is a big stepping motor type, size has a piezo system having a humidity problem and the small leaded vulnerability. In addition, there is a liquid lens system, the advantages of low power in a compact structure but also a structure with proven quality and reliability and features required pressure. In this paper, we implement two control systems that can control the actuator as a liquid range of VCM using a sharpness of the image acquired by the image sensor automatically initiates 5Mpixel class was the implementation verification of focusing.

A Study on the Fabrication of Piezoelectric Organic Thin Films by using Physical Vapor Deposition Method and Sensor Characteristics (진공증착법을 이용한 압전 유기 박막의 제조와 센서 특성에 관한 연구)

  • Park, Su-Hong;Lim, Eung-Choon;Park, Jong-Chan;Lee, Duck-Chool
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.35-39
    • /
    • 2001
  • The purpose of this paper is improvement the piezoelectric of Polyvinylidene fluoride(PVDF) organic thin films is fabricated by vapor deposition method. The piezoelectric of PVDF organic thin films attributed to dipole orientation in crystalline region. Also, the piezoelectric characteristic reduced that dipole moments orientation in crystalline region interfered with impurity carriers. Therefore, PVDF organic thin films fabricated with high substrate temperature condition for crystallinity improvement. The crystallinity of PVDF organic thin films fabricated by this condition increase from 47 to 67.8%. The ion density of PVDF organic thin films fabricated by substrate temperature variation from $30^{\circ}C$ to $105^{\circ}C$ decreased from $1.62{\times}10^{16}cm^3$ to $6.75{\times}10^{11}cm^3$ when temperature and frequency were $100^{\circ}C$, 10Hz, respectively. The $d_{33}$ and piezo-voltage coefficient of PVDF organic thin films increased from 20pPC/N to 33pC/N and $162.9{\times}10^{-3}V{\cdot}m/N$ to $283.2{\times}10^{-3}V{\cdot}m/N$, respectively. For the sake of the applications of piezoelectric sensor, we analyzed the output voltage characteristic as a function of the distance between an oscillator of 28kHz and PVDF organic thin film transducer. From this, we found that the output voltage is inversely proportional to the distance. At this time, the period was about $35.798{\mu}s$ and equal the oscillator frequency.

  • PDF

In Situ Sensing of Copper-plating Thickness Using OPD-regulated Optical Fourier-domain Reflectometry

  • Nayoung, Kim;Do Won, Kim;Nam Su, Park;Gyeong Hun, Kim;Yang Do, Kim;Chang-Seok, Kim
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.38-46
    • /
    • 2023
  • Optical Fourier-domain reflectometry (OFDR) sensors have been widely used to measure distances with high resolution and speed in a noncontact state. In the electroplating process of a printed circuit board, it is critically important to monitor the copper-plating thickness, as small deviations can lead to defects, such as an open or short circuit. In this paper we employ a phase-based OFDR sensor for in situ relative distance sensing of a sample with nanometer-scale resolution, during electroplating. We also develop an optical-path difference (OPD)-regulated sensing probe that can maintain a preset distance from the sample. This function can markedly facilitate practical measurements in two aspects: Optimal distance setting for high signal-to-noise ratio OFDR sensing, and protection of a fragile probe tip via vertical evasion movement. In a sample with a centimeter-scale structure, a conventional OFDR sensor will probably either bump into the sample or practically out of the detection range of the sensing probe. To address this limitation, a novel OPD-regulated OFDR system is designed by combining the OFDR sensing probe and linear piezo motors with feedback-loop control. By using multiple OFDR sensors, it is possible to effectively monitor copper-plating thickness in situ and uniformize it at various positions.

Research on Impact Sensors for Developing the Electronic Body Protector of Taekwondo (태권도 전자호구 개발을 위한 충격감지 센서 연구)

  • Ki, Jae-Sug;Jeong, Dong-Hwa;Lee, Hyun-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.648-655
    • /
    • 2019
  • This paper proposes the differential development of a Taekwondo electronic body protector. For this development, the most suitable sensor system was selected after analyzing and testing various sensor methods (magnetic sensors, electric capacity sensors, contact switch sensors, and piezo-film sensors) that could be applied in the electronic body protector, the selected sensors were distributed to the body and feet to make a more precise hit score, unlike the existing system in which all sensors are centralized on the body. Furthermore, it aims to illuminate using a lightweight film-type piezoelectric sensor on the body protector. In the case of an existing electronic body protector, all sensors and network device were concentrated on the body protector, so users need to purchase a set if they want it. On the other hand, the proposed system cloud can be used individually using a smart scoring WEP program. The effects of decreasing weight by up to 20% were compared with those of the existing system. Setting up a test facility is very difficult, so more study will be needed to analyze the effects of a hit.

Development of P.P.T CanSat System Applying Energy Harvesting System (에너지 하베스팅 시스템을 적용한 자가발전 P.P.T CanSat 시스템 개발)

  • Chae, Bong-Geon;Kim, Su-Hyeon;Kim, Hye-In;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2018
  • CanSat has being attracted considerable attentions for the use as training purposes owing to its advantage that can implement overall system functions of typical commercial satellites within a small package like a beverage can. So-called P.P.T CanSat (Power Plant Trio Can Satellite), proposed in this study, is the name of a CanSat project which have participated in 2015 domestic CanSat competition. Its main objective is to self-power on a LED and a MEMS sensor module by using electrical energy harvested from solar, wind and piezo energy harvesting systems. This study describes the system design results, payload level function tests, flight test results and lessons learned from the flight tests.

Damage Monitoring for Wind Turbine Blade using Impedance Technique (임피던스 기법을 이용한 풍력 블레이드 손상 모니터링)

  • Huh, Yong-Hak;Kim, Jongil;Hong, Seonggu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.452-458
    • /
    • 2013
  • Impedance based monitoring technique was investigated to evaluate the damage occurring in wind turbine blade. In this study, PVDF film piezo sensors were patched on the 10 kW wind turbine blade, and impedance was measured over the frequency range of 1~200 MHz under fatigue loading. With applying fatigue loads on the blade, change in maximum deflection of the blade and local strain values could be obtained from the strain gages attached on the blade, and difference of the impedance signatures was also observed. From these data, it could be found that local damage or geometrical change in the blade structure happened. To quantitatively compare the impedance signature patterns, a statistical algorithm, scalar damage metric M was used. It was calculated from the impedance signatures considering fatigue loads and location of the sensors. The metric values were compared to correlate the metrics with damage in the blade.