• Title/Summary/Keyword: Piecewise linear function

Search Result 90, Processing Time 0.023 seconds

Determination of a critical damage by experiment and analysis of tensile test (인장시험의 실험과 해석 결과를 이용한 임계손상도의 결정)

  • Jang, S.M.;Eom, J.G.;Lee, M.C.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.292-296
    • /
    • 2008
  • A new method of evaluating critical damage values of commercial materials is presented in this paper. The method is based on the previous study of the methodology [1] of acquisition of true stress-strain curves or flow stress curves over large strain from the tensile test in which the flow stress is described by the Hollomon law-like form, that is, by the strain dependent strength coefficient and the strain hardening exponent. The strain hardening exponent is calculated from the true strain at the necking point to meet the Considere condition. The strength coefficient is assumed to be constant before necking and represented by a piecewise linear function of strain after necking. With the predicted flow stress, a tensile test is simulated by a rigid-plastic finite element method with higher accuracy of less than 0.5% error between experiments and predictions. The instant when the fracture begins and thus the critical damage is obtained is determined by observing the stress variation at the necked region. It is assumed that the fracture due to damage begins when the pattern of stress around the necked region changes radically. The method is applied to evaluate the critical damage of a low carbon steel.

  • PDF

Sequential Analysis of Earth Retaining Structures Using p-y Curves for Subgrade Reaction

  • Kim, Hwang;Cha
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.149-164
    • /
    • 1996
  • The sequential behavior of earth retaining structure is investigated by using soil springs in elasto -plastic soil. Mathematical model that can be used to construct the p-y curves for subgrade modulus is proposed by using piecewise linear function. The excavation sequence of retaining wall is analyzed by the beam -column method. Reliability on the developed computer program is verfied through the comparison between the prediction and the in -situ measuidments. It is concluded that the proposed method simulates well the construction sequence and thus represents a significant improvement in the prediction of deflections of anchored wall excavation. Based on the results the proposed method can be effectively used for the evaluation of the relative importance of the parameters employed in a sensitivity analysis.

  • PDF

Neural-based Blind Modeling of Mini-mill ASC Crown

  • Lee, Gang-Hwa;Lee, Dong-Il;Lee, Seung-Joon;Lee, Suk-Gyu;Kim, Shin-Il;Park, Hae-Doo;Park, Seung-Gap
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.577-582
    • /
    • 2002
  • Neural network can be trained to approximate an arbitrary nonlinear function of multivariate data like the mini-mill crown values in Automatic Shape Control. The trained weights of neural network can evaluate or generalize the process data outside the training vectors. Sometimes, the blind modeling of the process data is necessary to compare with the scattered analytical model of mini-mill process in isolated electro-mechanical forms. To come up with a viable model, we propose the blind neural-based range-division domain-clustering piecewise-linear modeling scheme. The basic ideas are: 1) dividing the range of target data, 2) clustering the corresponding input space vectors, 3)training the neural network with clustered prototypes to smooth out the convergence and 4) solving the resulting matrix equations with a pseudo-inverse to alleviate the ill-conditioning problem. The simulation results support the effectiveness of the proposed scheme and it opens a new way to the data analysis technique. By the comparison with the statistical regression, it is evident that the proposed scheme obtains better modeling error uniformity and reduces the magnitudes of errors considerably. Approximatly 10-fold better performance results.

Estimating Leaching of Nutrients and Pesticides in Agricultural Lands -A Perferential Flow Model- (농경지의 비료, 농약의 지하유실량 추정 -Preferential 흐름모형-)

  • 이남호;타모스틴후이스
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.62-73
    • /
    • 1997
  • The application of nutrients and pesticides to agricultural lands has been reported to contribute to groundwater contamination, which can be explained by preferential flow in lieu of convective-dispersive flow. An one-dimensional numerical model depicting preferential water and solute movement was modified to describe multi-layer flows. The model is based on a piecewise linear conductivity function. By combining conservation of mass and Darcy's law and using the method of characteristics a solution is obtained for water flow in which water moves at distinct velocities in different flow regions instead of an average velocity for the whole profile. The model allows transfer ofqr solutes between pore groups. The transfer is characterized by assuming mixing coefficients. The model was applied to undisturbed soil columns and an experiment site with structured sandy clay loam soil. Chloride, bromide, and 2, 4-D were used as tracers. Simulated solutes concentrations were in good agreement with the soil column data and field data in which preferential flow of solute is significant. The proposed model is capable of describing preferential solute transport under laboratory and field conditions.

  • PDF

Online Evolving TSK fuzzy identification (온라인 진화형 TSK 퍼지 식별)

  • Kim, Kyoung-Jung;Park, Chang-Woo;Kim Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.204-210
    • /
    • 2005
  • This paper presents online identification algorithm for TSK fuzzy model. The proposed algorithm identify structure of premise part by using distance, and obtain the parameters of the piecewise linear function consisting consequent part by using recursive least square. Only input space was considered in Most researches on structure identification, but input and output space is considered in the proposed algorithm. By doing so, outliers are excluded in clustering effectively. The existing other algorithm has disadvantage that it is sensitive to noise by using data itself as cluster centers. The proposed algorithm is non-sensitive to noise not by using data itself as cluster centers. Model can be obtained through one pass and it is not needed to memorize many data in the proposed algorithm.

New Simplified Sum-Product Algorithm for Low Complexity LDPC Decoding (복잡도를 줄인 LDPC 복호를 위한 새로운 Simplified Sum-Product 알고리즘)

  • Han, Jae-Hee;SunWoo, Myung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.322-328
    • /
    • 2009
  • This paper proposes new simplified sum-product (SSP) decoding algorithm to improve BER performance for low-density parity-check codes. The proposed SSP algorithm can replace multiplications and divisions with additions and subtractions without extra computations. In addition, the proposed SSP algorithm can simplify both the In[tanh(x)] and tanh-1 [exp(x)] by using two quantization tables which can reduce tremendous computational complexity. Moreover, the simulation results show that the proposed SSP algorithm can improve about $0.3\;{\sim}\;0.8\;dB$ of BER performance compared with the existing modified sum-product algorithms.

A New Polynomial Digital Predistortion Method Based on Direct Learning for Linearizing Nonlinear Power Amplifier (비선형 앰프의 선형화를 위한 다항식 기반 직접 학습 방식의 디지털 사전왜곡 기법)

  • Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2382-2390
    • /
    • 2007
  • A new polynomial-based predistortion method for linearizing nonlinear power amplifier is proposed. The proposed method finds the predistortion parameter directly without the help of postdistorter whereas most existing polynomial-based predistortion methods calculate the predistortion parameter indirectly from the prostdistorter. First, a new predistortion algorithm is derived based on the assumption that the characteristic of the amplifier is modeled by piecewise linear function. Then it is modified into a proposed method which does not require any assumption or prior knowledge of the amplifier. The proposed method is derived based on the RLS (recursive least squares) algorithm. The proposed technique is simpler to implement than the existing methods and the computer simulation demonstrates that the proposed method is more robust to the initial condition and the saturation region of the amplifier.

Thermal Load Calculations on Stud-Frame Walls by Response Coefficient Method (응답계수(應答係數)를 이용(利用)한 건물벽에서의 열부하(熱負荷) 계산(計算))

  • Hwang, Y.K.;Pak, E.T.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.357-368
    • /
    • 1988
  • An application of thermal response coefficient method for obtaining thermal load on stud-frame walls in a typical house is presented. A set of stud-frame walls is two-dimensional heat conduction transients with composite structure. The ambient temperature on the right-hand face of the stud-frame walls is a typical day-cycle input and the room temperature on the left-hand face is a constant input. The desired output is thermal load at the left-hand face. The time-dependent ambient temperature is approximated by a continuous, piecewise-linear function each having one hour interval. The conduction problem is spatially discretized as 8 computer modelings by finite elements to obtain thermal response coefficients. The discretization and round-off errors can be neglected in the range of adequate number of nodes. A 60-node discretization is recommended as the optimum model among 8 computer modelings. Several sets of response coefficients of the stud-frame walls are generated by which the rate of heat transfer through the walls or some temperature in the walls can be calculated for different input histories.

  • PDF

Speech Recognition on Korean Monosyllable using Phoneme Discriminant Filters (음소판별필터를 이용한 한국어 단음절 음성인식)

  • Hur, Sung-Phil;Chung, Hyun-Yeol;Kim, Kyung-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.31-39
    • /
    • 1995
  • In this paper, we have constructed phoneme discriminant filters [PDF] according to the linear discriminant function. These discriminant filters do not follow the heuristic rules by the experts but the mathematical methods in iterative learning. Proposed system. is based on the piecewise linear classifier and error correction learning method. The segmentation of speech and the classification of phoneme are carried out simutaneously by the PDF. Because each of them operates independently, some speech intervals may have multiple outputs. Therefore, we introduce the unified coefficients by the output unification process. But sometimes the output has a region which shows no response, or insensitive. So we propose time windows and median filters to remove such problems. We have trained this system with the 549 monosyllables uttered 3 times by 3 male speakers. After we detect the endpoint of speech signal using threshold value and zero crossing rate, the vowels and consonants are separated by the PDF, and then selected phoneme passes through the following PDF. Finally this system unifies the outputs for competitive region or insensitive area using time window and median filter.

  • PDF

Optimum Design of Reinforced Concrete Outrigger Wall Opening Using Piecewise Linear Interpolation (구간선형보간법을 이용한 철근콘크리트 아웃리거 벽체 개구부의 최적설계)

  • Lee, Hye-Lym;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.217-224
    • /
    • 2020
  • In this study, a framework for optimizing the opening in an outrigger wall is proposed. To solve a constrained bounded optimization problem, an in-house finite element program and SQP algorithm in Python SciPy library are utilized. The openings of the outrigger wall are located according to the strut-tie behavior of the outrigger wall deep beam. A linear interpolation method is used to obtain differentiable continuous functions required for optimization, whereas a database is used for the efficiency of the optimization program. By comparing the result of the two-variable optimization through the moving path of the search algorithm, it is confirmed that the algorithm efficiently determines the optimized result. When the size of each opening is set to individual variables rather than the same width of all openings, the value of the objective function is minimized to obtain better optimization results. It was confirmed that the optimization time can be effectively reduced when using the database in the optimization process.