• Title/Summary/Keyword: Pi genes

Search Result 167, Processing Time 0.028 seconds

Wolbachia-mediated Reproductive Alterations in Arthropod Hosts and its use for Biocontrol Program (볼바키아 세균에 의한 절지동물 기주의 생식적 변화와 생물적방제 프로그램에 이용 방안)

  • Rostami, Elahe;Madadi, Hossein;Abbasipour, Habib;Sivaramakrishnan, Shiva
    • Korean journal of applied entomology
    • /
    • v.55 no.2
    • /
    • pp.177-188
    • /
    • 2016
  • The alpha-proteobacterium Wolbachia is one of the most important intracellular symbionts of arthropods. This Gram-negative bacterium is involved in many biological processes and is currently considered as a potential tool for biological control. Wolbachia is a cytoplasmic bacterium, maternally transferred through generations, and to facilitate its success, it has evolved several strategies that manipulate its host reproductive system to increase the number of infected individuals in the host population. The variety of Wolbachia was first recognized using genes wsp, 16S rRNA, ftsZ, gltA and groEL as molecular markers while strain genotypes of Wolbachia are determined of Multilocus sequence typing (MLST) and sequence of amino acid in region, hyper variable regions (HVRs) in protein WSP. Possible uses of the bacteria and their predominant phenotypes in control programs for agricultural pests and human disease vectors have been considered. Phenotypes are known to induce cytoplasmic incompatibility (CI), parthenogenesis induction (PI), feminization (F) and male killing (MK). Finally, applications of the bacterium in control programs of agricultural and medical insect pests have been discussed.

Post-cancer Treatment with Condurango 30C Shows Amelioration of Benzo[a]pyrene-induced Lung Cancer in Rats Through the Molecular Pathway of Caspase-3-mediated Apoptosis Induction -Anti-lung cancer potential of Condurango 30C in rats-

  • Sikdar, Sourav;Mukherjee, Avinaba;Bishayee, Kausik;Paul, Avijit;Saha, Santu Kumar;Ghosh, Samrat;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.16 no.3
    • /
    • pp.11-22
    • /
    • 2013
  • Objectives: The present investigation aimed at examining if post-cancer treatment with a potentized homeopathic drug, Condurango 30C, which is generally used to treat oesophageal cancer, could also show an ameliorating effect through apoptosis induction on lung cancer induced by benzo[a]pyrene (BaP) in white rats (Rattus norvegicus). Methods: Lung cancer was induced after four months by chronic feeding of BaP to rats through gavage at a dose of 50 mg/kg body weight for one month. After four months, the lung-cancer-bearing rats were treated with Condurango 30C for the next one ($5^{th}$), two ($5^{th}-6^{th}$) and three ($5^{th}-7^{th}$) months, respectively, and were sacrificed at the corresponding time-points. The ameliorating effect, if any, after Condurango 30C treatment for the various periods was evaluated by using protocols such as histology, scanning electron microscopy (SEM), annexinV-FITC/PI assay, flow cytometry of the apoptosis marker, DNA fragmentation, reverse transcriptase-polymerase chain reaction (RT-PCR), immunohistochemistry, and western blot analyses of lung tissue samples. Results: Striking recovery of lung tissue to a near normal status was noticed after post-cancerous drug treatment, as evidenced by SEM and histology, especially after one and two months of drug treatment. Data from the annexinV-FITC/PI and DNA fragmentation assays revealed that Condurango 30C could induce apoptosis in cancer cells after post-cancer treatment. A critical analysis of signalling cascade, evidenced through a RT-PCR study, demonstrated up-regulation and down-regulation of different pro- and anti-apoptotic genes, respectively, related to a caspase-3-mediated apoptotic pathway, which was especially discernible after one-month and two-month drug treatments. Correspondingly, Western blot and immunohistochemistry studies confirmed the ameliorative potential of Condurango 30C by its ability to down-regulate the elevated epidermal growth factor receptor (EGFR) expression, a hallmark of lung cancer. Conclusion: The overall result validated a positive effect of Condurango 30C in ameliorating lung cancer through caspase-3-mediated apoptosis induction and EGFR down-regulation.

Effect of Carotenoids on the Growth of HT-29 Human Colon Cancer Cells (Carotenoids가 인체의 대장암 세포인 HT-29 세포의 증식에 미치는 영향)

  • ;;;;Frederick Khachik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.428-436
    • /
    • 2003
  • Epidemiological studies have observed a negative association between increased consumption of green and yellow vegetables and cancer incidence. These vegetables contain carotenoids, which are reported to exhibit anticarcinogenic effects. Overexpression of ErbB2 and ErbB3 genes is a frequent event in several human cancers. The present study was performed to determine whether $\alpha$-carotene, $\beta$-carotene, lutein, or lycopene inhibits cell growth and to assess such an effect is related to changes in the levels of the ErbB receptor family and tile ErbB3 receptor signaling pathway in HT-29 cells. HT-29 cells were cultured in serum-free medium in the presence of various concentrations (0~100 $\mu$M) of the individual carotenoids. $\alpha$ -Carotene and lycopene significantly inhibited cell growth in a dose-dependent manner, whereas lutein slightly inhibited cell growth and $\beta$-carotene increased cell growth. Lycopene is more potent than $\alpha$ -carotene in inhibiting HT-29 cell growth. Lycopene inhibited DNA synthesis and induced apoptosis of HT-29 cells. The ErbB3 ligand heregulin (HRG) increased cell growth but did not prevent the lycopene-induced inhibition of cell growth. Lycopene decreased ErbB2 protein levels in a dose-dependent manner. Immunoprecipitation/Western blot studies revealed that lycopene inhibited HRG-induced phosphorylation of ErbB3, recruitment of the 985 regulatory subunit of phosphatidylinositol 3-kinase (PI3K) to the ErbB3 receptor, and phosphorylation of Akt. These results indicate that downregulation of ErbB2/ErbB3/PI3K/Akt signaling may be one of the mechanisms by which lycopene inhibits HT-29 cell pro-liferation and induces apoptosis.

P Element-Mediated Transformation with the rosy Gene in Drosophila melanogaster (D. melanogaster에 있어서 P Element를 이용한 rosy 유전자의 형질전환)

  • Kim, Wook;Kidwell, Margaret G.
    • The Korean Journal of Zoology
    • /
    • v.38 no.3
    • /
    • pp.340-347
    • /
    • 1995
  • We have used two kinds of P element constructs, Pc[(ry+)B] and p[(ry+)$\Delta$SX9], for genetic transformation by microinjection of D. melanogaster. Pc[(ry+)B] construct carrying the rosy gene within an autonomous P element was injected into a true M strain caring the ry506. mutation. The source of transposase for microinjection and transformation was provided by a P element helper plasmid designated p-$\Delta$2-3hs$\pi$, which was co-injected with nonautonomous P[(ry+)$\Delta$SX9] construct into same ry506 M strains. A dechorination method was adopted and 35 independent transformed lines were obtained froin 1143 G0 Injected (35/1143). About 20% of the injected embryos eclosed as adults. Among G0 eclosed flies, approximately 40% exhibited eye color that was similar to wild-type (ry+), but about 60% of fertile G0 transformed lines appeared to have no G1 transformants. Therefore it is unlikely that G0 expression requires integration of the rosy transposon into chromosomes. Pc[(ry+)B] and P[(ry+)$\Delta$SX9] constructs were found to be nearly same in the frequency of element-mediated transformation. On the basis of these results, nonautonomous P elements constructs could he used as same effective vectors in P element-mediated transformation for introducing and fixing genes in insect populations.

  • PDF

SREBP as a Global Regulator for Lipid Metabolism (지질대사 조절에서 SREBP의 역할)

  • Lee, Wonhwa;Seo, Young-kyo
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1233-1243
    • /
    • 2018
  • Sterol regulatory-element binding proteins (SREBPs) are a family of transcription factors that regulate lipid homeostasis and metabolism by controlling the expression of enzymes required for endogenous cholesterol, fatty acid (FA), triacylglycerol, and phospholipid synthesis. The three SREBPs are encoded by two different genes. The SREBP1 gene gives rise to SREBP-1a and SREBP-1c, which are derived from utilization of alternate promoters that yield transcripts in which distinct first exons are spliced to a common second exon. SREBP-2 is derived from a separate gene. Additionally, SREBPs are implicated in numerous pathogenic processes, such as endoplasmic reticulum stress, inflammation, autophagy, and apoptosis. They also contribute to obesity, dyslipidemia, diabetes mellitus, and nonalcoholic fatty liver diseases. Genome-wide analyses have revealed that these versatile transcription factors act as important nodes of biological signaling networks. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signaling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. SREBPs are activated through the PI3K-Akt-mTOR pathway in these processes, but the molecular mechanism remains to be understood. This review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ, and organism levels.

Bleomycin Inhibits Proliferation via Schlafen-Mediated Cell Cycle Arrest in Mouse Alveolar Epithelial Cells

  • Jang, Soojin;Ryu, Se Min;Lee, Jooyeon;Lee, Hanbyeol;Hong, Seok-Ho;Ha, Kwon-Soo;Park, Won Sun;Han, Eun-Taek;Yang, Se-Ran
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.2
    • /
    • pp.133-142
    • /
    • 2019
  • Background: Idiopathic pulmonary fibrosis involves irreversible alveolar destruction. Although alveolar epithelial type II cells are key functional participants within the lung parenchyma, how epithelial cells are affected upon bleomycin (BLM) exposure remains unknown. In this study, we determined whether BLM could induce cell cycle arrest via regulation of Schlafen (SLFN) family genes, a group of cell cycle regulators known to mediate growth-inhibitory responses and apoptosis in alveolar epithelial type II cells. Methods: Mouse AE II cell line MLE-12 were exposed to $1-10{\mu}g/mL$ BLM and $0.01-100{\mu}M$ baicalein (Bai), a G1/G2 cell cycle inhibitor, for 24 hours. Cell viability and levels of pro-inflammatory cytokines were analyzed by MTT and enzyme-linked immunosorbent assay, respectively. Apoptosis-related gene expression was evaluated by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Cellular morphology was determined after DAPI and Hoechst 33258 staining. To verify cell cycle arrest, propidium iodide (PI) staining was performed for MLE-12 after exposure to BLM. Results: BLM decreased the proliferation of MLE-12 cells. However, it significantly increased expression levels of interleukin 6, tumor necrosis factor ${\alpha}$, and transforming growth factor ${\beta}1$. Based on Hoechst 33258 staining, BLM induced condensation of nuclear and fragmentation. Based on DAPI and PI staining, BLM significantly increased the size of nuclei and induced G2/M phase cell cycle arrest. Results of qRT-PCR analysis revealed that BLM increased mRNA levels of BAX but decreased those of Bcl2. In addition, BLM/Bai increased mRNA levels of p53, p21, SLFN1, 2, 4 of Schlafen family. Conclusion: BLM exposure affects pulmonary epithelial type II cells, resulting in decreased proliferation possibly through apoptotic and cell cycle arrest associated signaling.

The Porcine FoxO1, FoxO3a and FoxO4 Genes: Cloning, Mapping, Expression and Association Analysis with Meat Production Traits

  • Yu, Jing;Zhou, Quan-Yong;Zhu, Meng-Jin;Li, Chang-Chun;Liu, Bang;Fan, Bin;Zhao, Shu-Hong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.627-632
    • /
    • 2007
  • FoxO1, FoxO3a and FoxO4 belong to the FoxO gene family, which play important roles in the PI3K/PKB pathway. In this study, we cloned the porcine FoxO1, FoxO3a and FoxO4 sequences and assigned them to SSC11p11-15, SSC1p13 and SSC xq13 using somatic cell hybrid panel (SCHP) and radiation hybrid panel (IMpRH). RT-PCR results showed that these three genes are expressed in multiple tissues. Sequencing of PCR products from different breeds identified a synonymous T/C polymorphism in exon 2 of FoxO3a. This FoxO3a single nucleotide polymorphism (SNP) can be detected by AvaII restriction enzyme. The allele frequencies of this SNP were investigated in Dahuabai, Meishan, Tongcheng, Yushan, Large White, and Duroc pigs. Association of the genotypes with growth and carcass traits showed that different genotypes of FoxO3a were associated with carcass length and backfat thickness between 6th and 7th ribs (BTR) and drip loss (p<0.05).

Ginsenoside Rg4 Enhances the Inductive Effects of Human Dermal Papilla Spheres on Hair Growth Via the AKT/GSK-3β/β-Catenin Signaling Pathway

  • Lee, Yun Hee;Choi, Hui-Ji;Kim, Ji Yea;Kim, Ji-Eun;Lee, Jee-Hyun;Cho, So-Hyun;Yun, Mi-Young;An, Sungkwan;Song, Gyu Yong;Bae, Seunghee
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.933-941
    • /
    • 2021
  • Ginsenoside Rg4 is a rare ginsenoside that is naturally found in ginseng, and exhibits a wide range of biological activities including antioxidant and anti-inflammatory properties in several cell types. The purpose of this study was to use an in vivo model of hair follicle (HF)-mimic based on a human dermal papilla (DP) spheroid system prepared by three-dimensional (3D) culture and to investigate the effect of Rg4 on the hair-inductive properties of DP cells. Treatment of the DP spheroids with Rg4 (20 to 50 ㎍/ml) significantly increased the viability and size of the DP spheres in a dose-dependent manner. Rg4 also increased the mRNA and protein expression of DP signature genes that are related to hair growth including ALP, BMP2, and VCAN in the DP spheres. Analysis of the signaling molecules and luciferase reporter assays further revealed that Rg4 induces the activation of phosphoinositide 3-kinase (PI3K)/AKT and the inhibitory phosphorylation of GSK3β, which activates the WNT/β-catenin signaling pathway. These results correlated with not only the increased nuclear translocation of β-catenin following the treatment of the DP spheres with Rg4 but also the significant elevation of mRNA expression of the downstream target genes of the WNT/β-catenin pathway including WNT5A, β-catenin, and LEF1. In conclusion, these results demonstrated that ginsenoside Rg4 promotes the hair-inductive properties of DP cells by activating the AKT/GSK3β/β-catenin signaling pathway in DP spheres, suggesting that Rg4 could be a potential natural therapy for hair growth.

Molecular physiological inhibitory effects of chloroacetanilide herbicide pretilachlor on marine dinoflagellate Prorocentrum minimum (해양 와편모조류 Prorocentrum minimum에 대한 아세트아닐라이드계 제초제 프레틸라클로르의 분자 생물학적 저해 효과)

  • Hansol Kim;Jang-Seu Ki
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.452-462
    • /
    • 2021
  • Pretilachlor (PRE) is a common acetanilide herbicide used worldwide. However, its effects on aquatic organisms, particularly marine photosynthetic life, are not sufficiently known. Herein, we evaluated the toxic effects of PRE by physiological and molecular parameters in the photosynthetic dinoflagellate Prorocentrum minimum. The cell density, pigment content, and photosynthetic parameters (Fv/Fm and PIABS) were considerably decreased with increased PRE exposure time and doses. In addition, photosynthesis-related genes, PmpsbA, PmpsaA, and PmatpB, were significantly upregulated when exposed to 1.0 mg L-1 of PRE for 24 h (p<0.001). In 72 h treatment, the relative gene expression was significantly increased (0.1 and 0.5 mg L-1; p<0.01). In contrast, PmrbcL was decreased or little changed compared to the controls. Reactive oxygen species (ROS) increased after 24 h exposure (p<0.001). However, the transcriptional fold-changes in glutathione S-transferase (GST) were significantly increased (0.5 and 1.0 mg L-1; p<0.001) at 72 h. These findings suggested that the PmGST might be involved in PRE detoxification in P. minimum. In addition, PRE may affect the photosystem function in phytoplankton similar to other acetanilides, causing severe damage or cell death.

Prognostic Significance of GSTP1, XRCC1 and XRCC3 Polymorphisms in Non-small Cell Lung Cancer Patients

  • Ke, Hong-Gang;Li, Jun;Shen, Yi;You, Qing-Sheng;Yan, Yu;Dong, Han-Xuan;Liu, Jun-Hua;Shen, Zhen-Ya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4413-4416
    • /
    • 2012
  • Aim: Individual differences in chemosensitivity and clinical outcome in non-small cell lung cancer (NSCLC) patients treatment with platinum-based chemotherapy may be due to genetic factors. Our study aimed to investigate the prognostic role of GSTP1, XRCC1 and XRCC3 in NSCLC patients treated with chemotherapy. Methods: A total of 460 cases were consecutively selected from The Affiliated Hospital of Nantong University between Jan. 2003 to Nov. 2006, and all were followed-up until Nov. 2011. Genotyping of GSTP1 Ile105Val, XRCC1 Arg194Trp, XRCC1 Arg399Gln and XRCC3 Thr241Met was conducted by duplex polymerase-chain-reaction with confronting-two-pair primer methods. Results: Patients with GSTP Val/Val exhibited a shorter survival time, and had a 1.89 fold greater risk of death than did those with the IIe/IIe genotype. For XRCC1 Arg194Trp, the variant genotype Trp/Trp was significantly associated with a decreased risk of death from NSCLC when compared with the Arg/Arg. Individuals carrying XRCC1 399Gln/Gln genotype had a longer survival time, with a lowered risk of death from NSCLC. Conclusion: This study indicated that GSTP1 Ile105Val, XRCC1 Arg194Trp and XRCC1Arg399Gln genes have a role in modifying the effect of platinum-based chemotherapy for NSCLC patients in a Chinese population. Our findings provide information for therapeutic decisions for individualized therapy in NSCLC cases.