• Title/Summary/Keyword: Phytoplankton standing Stock

Search Result 8, Processing Time 0.018 seconds

Annual Variations(2001-2010) of Phytoplankton Standing Stocks in Saemangeum Water Region (새만금 수역 식물플랑크톤 현존량의 경년(2001-2010) 변화)

  • Yeo, Hwan-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4326-4333
    • /
    • 2012
  • Phytoplankton standing stocks had been researched in Saemangeum water region from 2001 to 2010 belong to the construction period of Saemangeum dike. The big change of phytoplankton standing stocks was shown, reaching 57 - 85,219 cells/ml according to the sampling seasons and stations. Inside of Saemangeum lake, a flux of fresh water and sea water made the phytoplankton standing stocks changed spatiotemporally. Meanwhile, the water bloom was frequent with continuously high standing stocks of fresh water stations and the standing stocks outside of the dike have been normal. In the long-term point of view, the standing stock did not show a big change comparing to the before and after of closing the dike(April, 2006).

Ecological Studies on the Asan Reservoir. 2. Phytoplankton Community Structure (아산호의 생태학적 연구 2.식물플랑크톤 군집 구조)

  • Kim, Young-Gil;Shin, Yoon-Keun
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.187-197
    • /
    • 2002
  • To analyze the structure of phytoplankton community of the Asan Reservoir in Korea, samples were collected 6 times from March to November in 1997. A total of 204 phytoplanklon species were identified from the samples of 19 stations. Green algae dominated the phytoplankton community, accounting for 51% of species number, followed by diatoms (29%), cyanobacteria (12%), dinoflagellates (2%) ,euglenoids (3%) and other flagellates (3%). Standing stocks of phytoplankton were very high in the range of 741-613,066 cells/ml, with the highest standing stock in July. Water Booms seemed to occur in the Asan Reservoir regardless of seasons, with water bloom-causing species being Micractium pusillum, Stephanodiscus, hantzschii, Dictyospharium pulchellum, cryptomonad(> 20 ${\mu}$m), Microcystis aeruginosa, Oscillatoria tenuis, Oscillatoria sp., Aphanocapsa sp. Euglena sp., Volvox aureus. In the summer, cyanobacteria dominated algal bloom. Species diversity of phytoplankton community in the reservoir was in the range of 0.13 ${\sim}$ 3.20, and showed much difference temporally and spatially. The cluster analysis identified two different regions of upstream area and downstream area for the Asan Reservoir.

Preliminary Diagnosis for Pulsing Simulation of Low Trophic Ecosystem by Environmental Changes in Coastal Area (연안해역의 환경변화에 따른 저차 생태계 Pulsing Simulation 예비 진단)

  • Lee, Dae-In
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.461-468
    • /
    • 2012
  • In general, long-term changes of ecological factors take a pulse form in which they interact with other factors and go through a repeated increasing and decreasing cycle. The coupling of the two approaches the grid model and the box model in ecological modeling can lead to an in-depth understanding of the environment. The study analyzes temporal variations of major storages with an energy system model that formulizes effectively the relationships among nutrients, phytoplankton, and zooplankton in the Yellow Sea and the East China Sea. An increase of light intensity and standing stock of nutrient increase the magnitude and frequency of pulsing. Also, an immense reduction of nutrient concentration can cause extinction of the pulsing and bring about a steady state. It is concluded that the nutrient loads in freshwater discharge from the Yangtze affect the cycles of major ecological components as well as water quality variables and play an important role in the marine ecosystem.

PLANKTON STUDY IN THE SOUTHEASTERN SEA OF KOREA(I) - Phytoplankton Distribution in September, 1981- (韓國 東南 海域의 플랑크톤 硏究(I) -1981年 9月의 植物플랑크톤 分布-)

  • Shim, Jae Hyung;Lee, Won, Ho
    • 한국해양학회지
    • /
    • v.18 no.2
    • /
    • pp.91-103
    • /
    • 1983
  • Qualitative and quantitative phytoplankton samples collected during a cruise in the southeastern sea of Korea in September 1981, were analysed. A total of 185 species of phytoplankters were identified in the present study. Of the numbers 14 species of diatoms and 56 dinoflagellate forms were found. The rest were 3 silicoslagellate forms, a cryptomonad and a euglenoid each. On the bases of the analyses of the phytoplankton communities, two vegetation areas were recognized. It is demonstrated that the extent of each vegetation area largely depends on hydrographical features. In southeastern coastal waters, the vegetation was fairly rich, and consisted of small celled diatoms and minute flagellates. In the northern part of the area, abundant phytoplanktons were present consisting of various diatoms and dimofalgellates. The size of standing stock of phytoplankton was compared with hydrography and the specific composition of phytoplankton. The importance of mixing between the Tsushima warm current water and North Korean cold water in distributing phytoplankton stocks was stressed.

  • PDF

The Influences of Coastal Upwelling on Phytoplankton Community in the Southern Part of East Sea, Korea (동해 남부 연안 해역에서 냉수대 발생이 식물플랑크톤 군집에 미치는 영향)

  • Kim, A-Ram;Youn, Seok-Hyun;Chung, Mi-Hee;Yoon, Sang-Chol;Moon, Chang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.4
    • /
    • pp.287-301
    • /
    • 2014
  • In order to understand environment condition and phytoplankton community before and after coastal upwelling, the influences of upwelling events on phytoplankton community were studied at 18 stations located the Southern part of East Sea, Korea from May to August 2013. The surface water masses showed low temperature and high salinity due to upwelling events at coastal stations (A1, B1, C1). Correlation between temperature and nutrients (DIP, r=-0.218, p<0.01; DIN, r=-0.306, p<0.01; silicate, r=-0.274, p<0.01) was significantly negative. This result could be explained that nutrients were supplied to surface water by the upwelling of bottom water. Phytoplankton communities were composed of 186 species. Phytoplankton abundance were relatively high in May (C1, $726{\times}10^3cells\;L^{-1}$) and July (A1, $539{\times}10^3cells\;L^{-1}$). Total chlorophyll a and micro-size fraction ($&gt;20{\mu}m$) increased at coastal stations in July and August, while phytoplankton abundance and total chl. a was much low in June. Dominant species in June was Pseudo-nitzschia spp. of which the cell size was $309{\mu}m^3$. Cell size of Pseudo-nitzschia spp. was smaller than dominant species in other period. Therefore, the increase in total chloro-phyll a and the size of phytoplankton was resulted in the sufficient supply of nutrients. In contrast, these tendencies were not observed at outside stations. These results suggested that coastal upwelling was an important influencing factor to determine the species composition and standing stock of phytoplankton community in the coastal waters of the Southern part of East Sea, Korea.

Filter-Feeding Effect of a Freshwater Bivalve (Corbicula leana PRIME) on Phytoplankton (식물플랑크톤에 대한 담수산 패류 (참재첩)의 섭식효과)

  • Kim, Ho-Sub;Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.4 s.96
    • /
    • pp.298-309
    • /
    • 2001
  • The purpose of this study was to evaluate the filtering-feeding effect of a freshwater mussel (Corbicula leana) on the phytoplankton communities in two lakes with different trophic conditions between June and September, 2000. Manipulation experiments were conducted with two treatments (the control and mussel addition), and each established in duplicate 10 l chambers. Both ambient nutrient (TN, TP) and chlorophyll-a concentrations were significantly (p<0.01) higher in Lake Ilgam than Lake Soyang. Cyanophytes (Microcystis, Oscillatoria, Lyngbya and Dactylococcopis) consistently dominated algal community in Lake llgam, while flagellated algae (Dinobryon divergence, Mallomonas, Rhodomonas) and cyanophytes (Microcystis)dominated in Lake Soyang. The net exponential death rate ($R\;=\;day^{-1}$) of total phytoplankton in the mussel treatment ranged $1.70{\sim}7.39$ and $0.38{\sim}1.64$ in Lakes Soyang and Ilgam, respectively. Mean filtering rate standardized by mussel AFDW ($ml\;mgAFDW^{1}\;h^{-1}$) was much higher in Lake Soyang ($1.70{\sim}3.06$) than in Lake Ilgam($0.24{\sim}0.88$0.24~o.88). Estimating FR per mussel, 1 mussel filtered $1.6{\sim}7.8\;l$ per day and $1.7{\sim}3.0\;l$ per day in Lakes Soyang and Ilgam, respectively. Based on tile C-flux tobiomass ratio, Corbicula leana consumed $0.8{\sim}4.4$ fold of phytoplankton standing stock in Lake Soyang, and $0.4{\sim}1.6$ fold in Lake Ilgam per day. Mussel feeding resulted in increase of SRP concentration by $30{\sim}50%$, compared with the control. The results of this study suggest that filter-feeding activity of Corbicula leana varies depending on the phytoplankton density and community composition. The high seston consumption rate of Corsicuja Jeaua even in a eutrophic lake suggests that biomanipulation approach using filter-feeding mussels can be used far wate rquality management in small eutrophic reservoirs.

  • PDF

Spatio-Temporal Distribution of Zooplankton Community in Kyeonggi Bay, Yellow Sea (경기만 동물플랑크톤 군집의 시공간적 분포)

  • 윤석현;최중기
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.243-250
    • /
    • 2003
  • The spatio-temporal distribution of zooplankton community was investigated in Kyeonggi Bay with monthly samples from February 2001 to December 2001 at 5 stations along a transect between Incheon coastal waters and Seongap-Do. Monthly mean abundance of total zooplankton ranged from 1,100(Feb.)∼404,200 indiv./㎥ (Aug.) and annual mean abundance of total zooplankton was 55,000 indiv./㎥. The spatial mean abundance of total zooplankton varied from 114,600 indiv./㎥ (Incheon coastal waters) to 16,500 indiv./㎥ (Seongab-Do). Zooplankton abundance was higher in the inner bay than in the outer bay. Noctiluca scintillans, Acartia hongi, Oithona davisae, Paracalanus crassirostris, Paracalanus indicus and Oikopluera spp. were dominant species in Kyeonggi Bay and they contributed 95% of annual mean abundance of total zooplankton. Most of dominant species distributed widely in study area throughout the year, however seasonal abundance peak only happened in inner part of the Bay. This pattern suggests that the spatio-temporal distribution of zooplankton is affected by the variations of water temperature and phytoplankton standing stock.

Annual cycles of nutrients and dissolved oxygen in a nutrient-rich temperate coastal bay, Chinhae Bay, Korea (영양염류가 풍부한 온대 해역 내만(한국, 진해만)에서의 영양염류와 용존산소의 연변화)

  • HONG, GI HOON;KIM, KYUNG TAE;PAE, SE JIN;KIM, SUK HYUN;LEE, SOO HYUNG
    • 한국해양학회지
    • /
    • v.26 no.3
    • /
    • pp.204-222
    • /
    • 1991
  • The annual cycles of plant major nutrients and dissolved oxygen in a nutrients-rich semi-enclosed coastal inlet, chinhae Bay, of the southern coast of the Korean Peninsula are first presented. The water column of the bay is stratified during summer (April-late September) and well0mixed during winter (October-March). During the summer stratification period, dissolved oxygen contents exceed 400uM in the surface but diminish to less than 50uM in the near bottom waters, which often results in an anoxic environment in the inner part of Chinhae Bay. After the breakdown of the stratification in October, dissolved oxygen concentration remains undersaturated until February. The evidence of allochthonous input of N-nutrients throughout the year is readily seen in the water column: however. crude budget calculations show that the nutrients are efficiently utilized within the bay ecosystem, and that export of the nutrients from the bay to the shelf must be negligible. There is no sign of the enrichment of the nutrients in the water column. The eutrophication phenomenon sensu stricto is not observed in chinhae Bay. Using the standing stock of dissolved oxygen and estimation of the oxygen fluxes across the air-sea boundary, a benthic oxygen respiration rate during winter is estimated conservatively at 21-24 mmol Cm/SUP -2/d/SUP -1/. this oxygen respiration rate accounts for about 20% of the total phytoplankton production in winter.

  • PDF